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‭Abstract ‬
‭Widespread loss of the Mediterranean’s dominant seagrass species,‬‭Posidonia oceanica‬‭, have‬

‭been documented over the past two decades and are expected to increase under imminent‬

‭aquaculture expansion plans. This study aims to investigate historic and current impacts of fish‬

‭farming on‬‭P. oceanica‬‭meadows around the island of‬‭Poros, Greece, aiming to quantify the‬

‭magnitude, spatial extent, and persistence of potential health declines, to establish baseline‬

‭conditions for future monitoring and to anticipate future impacts. Three key seagrass health‬

‭indicators were measured: maximal leaf length (individual-level), meadow cover (population-level),‬

‭and epiphyte cover (community-level). To establish the nature and spatio-temporal scale of‬‭P.‬

‭oceanica‬‭responses, these metrics were compared between‬‭currently farmed sites, previously‬

‭farmed sites and unfarmed control sites; at increasing distances from fish farms; and under‬

‭increasing cumulative durations of fish farming activity. Overall, fish farming was associated with‬

‭substantial declines in‬‭P. oceanica‬‭health. Health‬‭reductions persisted 14 years after farm removal,‬

‭though there was some evidence for individual-level recovery with depth. Although negative effects‬

‭diminished with distance, significant health reductions were maintained at long distances (900m)‬

‭from farms. Unexpectedly, epiphyte cover was lowest near to active farms but elevated at the‬

‭previously farmed location, suggesting potential complex community-level responses.‬‭P. oceanica‬

‭health declined under increasing durations of cumulative fish farming activity, with significant‬

‭reductions detectable at least 10 years after introduction. These findings underscore the need for‬

‭spatially informed and time-aware aquaculture management strategies to prevent long-term and‬

‭potentially irreversible seagrass degradation.‬

‭1. Introduction ‬
‭Seagrass meadows are among the most productive (Panayotidis‬‭et al.‬‭, 2022) and economically‬

‭valuable (Lima‬‭et al.‬‭, 2022) ecosystems on the planet.‬‭Seagrass ecosytems are globally significant‬

‭carbon sinks, sequestering carbon at 35 times the rate of tropical rainforests (McLeod et al, 2011),‬

‭and provide a wide range of ecosystem services, such as habitat maintenance, food provision,‬

‭water purification and coastal protection (Lima‬‭et‬‭al.‬‭, 2022). However, seagrasses are increasingly‬

‭under threat from both global pressures and local anthropogenic disturbances, particularly in the‬

‭Mediterranean (Chefaoui‬‭et al.‬‭, 2018; Litsi-Mizan,‬‭2023).  ‬

‭Posidonia oceanica‬‭(Linnaeus)‬‭Delile‬‭, is a marine‬‭angiosperm endemic to the Mediterranean and‬

‭is the dominant seagrass species found in the region (Panaytotidis‬‭et al.‬‭, 2022).‬‭P. oceanica‬

‭covers an estimated 2.79 million ha of the Mediterranean coasts (Pergent-Martini‬‭et al.‬‭, 2021),‬

‭forming meadows comprised of a dense network of horizontal and vertical rhizomes termed ‘matte’‬

‭that can be thousands of years old (Larkum‬‭et al.‬‭,‬‭2006).‬‭P. oceanica‬‭grows best in sheltered‬

‭coastal zones between depths of 0-40m and good water clarity is critical for meadow formation‬

‭(Panayotidis‬‭et al.‬‭, 2022). In optimal conditions,‬‭P. oceanica‬‭leaves can grow to 2m, but are‬

‭relatively slow-growing, each leaf taking 50.68 days to grow on average. This growth rate is‬
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‭significantly lower than other seagrass species: for example, a leaf of‬‭Zostera noltii‬‭grows in‬

‭approximately 13.71 days (Marba‬‭et al.‬‭, 2004). Thus,‬‭this species is especially vulnerable to‬

‭pollution and losses in‬‭P. oceanica‬‭cover are deemed‬‭irreversible (Delgado‬‭et al.‬‭, 1999). ‬

‭As coastal populations doubled across the second half of the 20‬‭th‬ ‭Century, anthropogenic stress on‬

‭the Mediterranean coastal zone has rapidly increased (Benoit & Comeau, 2012). As a result, 25%‬

‭of‬‭P. oceanica‬‭meadow area was lost between 1984 and‬‭2014, and the remaining area is‬

‭increasingly threatened by anthropogenic activity (Blanco-Murillo‬‭et al.‬‭, 2012). On a local scale,‬

‭aquaculture is a rapidly increasing anthropogenic threat, with coastal fish farming being considered‬

‭one of the most significant local stressors to seagrass ecosystems in the Mediterranean (Holmer‬‭et‬

‭al.‬‭2008; Apostolaki‬‭et al.‬‭, 2009). ‬

‭Aquaculture refers to the practice of cultivating aquatic or marine species in tanks or enclosures in‬

‭natural or pseudo-natural environments, typically to produce food (FAO, 2022). Fish-producing‬

‭aquaculture is known as pisciculture or fish farming. Fish farming is an important and rapidly‬

‭growing food sector across the globe (FAO, 2022). In 2020, more than 88 million tonnes of global‬

‭aquatic animal production were accounted for by fish farming, making up half of total fisheries and‬

‭aquaculture production (FAO, 2022). Aquaculture has also been the fastest-growing major food‬

‭production sector over the past two decades, growing by 5.8% per annum between 2001 and‬

‭2016, exceeding the growth rate of capture fisheries (FAO, 2018).‬

‭Since the early 1990s, the Mediterranean region has been a hotspot for aquaculture production‬

‭and in recent years has experienced a growing demand from consumers worldwide (FAO, 2018).‬

‭One of the top-producing Mediterranean countries is Greece, with an estimated 144,595 mt of‬

‭marine fish produced by fish farms each year (Taşkın‬‭et al.‬‭, 2024). In 2011, the Greek government‬

‭established the Special Planning Framework for Aquaculture (Government Gazette‬

‭2505/B/4-11-2011). This framework has encouraged the further development and expansion of fish‬

‭farms across Greece, defining 25 regions as Organised Aquaculture Development Areas (OADAs).‬

‭The Ministry of Development has also declared a Multi-Year National Strategic Plan for the‬

‭Development of Aquaculture (2021-2030), which will further boost the growth of the industry.‬

‭Based on the 2011 framework, Greece aims to increase current production 24-fold across a‬

‭significant portion of its mainland and island coastlines, including the focal site of this study: Poros‬

‭(Greek Ministry of Environment and Energy, 2011).   ‬

‭Fish farming in this region is dominated by two main species, the European seabass‬

‭(‬‭Dicentrarchus labrax‬‭) and gilthead seabream (‬‭Sparus‬‭aurata‬‭) (Massa‬‭et al.‬‭, 2017). The typical‬

‭farming strategy uses suspended cages placed in productive coastal zones. To maximise yield,‬

‭growing fishes are fed with dry fodder and chemicals are applied to prevent disease and biofouling‬

‭(Massa‬‭et al.‬‭, 2017). These inputs, and outputs such‬‭as fish faeces, escape into the surrounding‬

‭natural environment. Fish farming discharges have contributed to significant environmental‬
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‭degradation, including increased sedimentation, altered nutrient flows and disease spread (Marino,‬

‭2011; Aguado-Gimenez‬‭et al.‬‭2012). Due to the oligotrophic nature of the Mediterranean Sea, the‬

‭nutrients introduced by intensive farming practices are especially destabilising to benthic‬

‭ecosystems (Cancemi‬‭et al.‬‭, 2003; Holmer‬‭et al.‬‭, 2008).‬‭ ‬

‭The ideal habitat conditions for‬‭P. oceanica‬‭are also‬‭optimal for fish farming activity (Holmer‬‭et al.‬‭,‬

‭2008). As seagrass meadows are found over approximately 70% of the Greek coastline‬

‭(Panayotidis‬‭et al.‬‭, 2022),‬‭P. oceanica‬‭frequently‬‭co-occurs with fish farms, and significant losses in‬

‭meadow area have been attributed to fish farming practices (Pergent-Martini‬‭et al.‬‭, 2006). For‬

‭example, Ruiz‬‭et al.‬‭(2001) reported 50%‬‭P. oceanica‬‭meadow loss five years after the onset of‬

‭fish farming, extending to 7-fold the fish-farming area.  ‬

‭Various studies have reported significant impacts derived from fish farming on‬‭P. oceanica‬

‭meadows across biochemical, physiological, morphological and ecological metrics (Ruiz‬‭et al.‬‭,‬

‭2001; Cancemi‬‭et al.‬‭, 2002; Holmer‬‭et al.‬‭, 2008; Apostolaki‬‭et al.‬‭, 2009). Impacts include‬

‭reductions in shoot density and cover; abnormal (typically reduced) length and width of leaves;‬

‭reduced rates of primary production; and lowered biodiversity. These changes have been observed‬

‭as a function of distance from fish farms and are highly site-dependent, with significant impacts‬

‭observed from 200m to 1.2 km from farms (Pergent-Martini‬‭et al.‬‭, 2006; Marba‬‭et al.‬‭, 2006).‬

‭Organic loading from fish farm discharges is also transforming seagrass meadows under cages‬

‭from sinks to sources of organic carbon, which may intensify the effects of global climate change‬

‭(Apostolaki‬‭et al.‬‭, 2011). Based on these findings,‬‭it is likely that increasing fish farming activity in‬

‭Greece will further threaten‬‭P. oceanica‬‭populations,‬‭especially when considering this species’‬

‭particular vulnerability and low recovery rate.‬

‭As a designated OADA, Poros, Greece, is subject to government plans that will increase current‬

‭fish farm production levels 6.7 times, from the current annual production of 1,147 tons across five‬

‭farms to 8,831 tons (‬‭Fig. 1b‬‭). To support elevated‬‭production levels, the area designated to support‬

‭farms will expand to 28 times its current size, occupying 25% of the island’s coastline (‬‭Fig. 1‬‭)‬

‭(Municipality of Poros, 2022). Therefore, a minimum of 25% of the coastal environment is set to be‬

‭impacted by fish farms, with a greater area likely to be affected due to the leakage of aquaculture‬

‭effluents.‬

‭However, data on the historical and current condition of the‬‭P. oceanica‬‭meadows surrounding‬

‭Poros, remain scarce, limiting our ability to assess the extent to which existing fish farms may have‬

‭already damaged these ecosystems. Furthermore, the relationship between the duration of fish‬

‭farming activity and seagrass health remains poorly understood (Thomsen et al, 2020). As a result,‬

‭the potential severity and scale of future impacts under proposed aquaculture expansion plans on‬

‭Poros are difficult to anticipate.‬
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‭Moreover, no quantitative baseline currently exists against which we can monitor long-term‬

‭ecological changes on Poros, and seagrass ecosystem baselines across the eastern‬

‭Mediterranean remain relatively limited (Taskin‬‭et al.‬‭, 2024). This is particularly concerning given‬

‭the dual pressures of aquaculture pollution and climate change, which together may exacerbate‬

‭stress on vulnerable seagrass ecosystems into the future (Litsi-Mizan‬‭et al.‬‭, 2023).‬

‭Therefore, this study aims to provide a current assessment of‬‭P. oceanica‬‭health in response to‬

‭fish farming activity on the highly threatened coasts of Poros. Thus, offering a critical reference‬

‭point for detecting future change and guiding adaptive fish farm management strategies on Poros‬

‭and the wider Mediterranean region. Given plans to expand coastal aquaculture by 2030, if we are‬

‭to protect the vital ecological and economic roles‬‭P. oceanica‬‭provides, understanding the spatial‬

‭and temporal impact of fish farms in locations such as Poros is particularly urgent. ‬

‭The main goal of this study is to: ‬

‭Establish the nature and scale of fish farming impacts to‬‭P. oceanica‬‭meadow health on‬
‭Poros‬‭ ‬

‭The sub-goals (followed by corresponding hypotheses) of this study are to: ‬

‭1.‬ ‭Establish whether‬‭P. oceanica‬‭health improves after‬‭fish farm removal, to determine‬
‭the recovery potential of‬‭P. oceanica‬

‭H1:‬‭P. oceanica‬‭health will be significantly reduced‬‭even after fish farm removal.‬

‭2.‬ ‭Identify the spatial extent of any observed changes to‬‭P. oceanica‬‭health, to derive‬
‭estimated radiuses of fish farming impact‬

‭H2:‬‭P. oceanica‬‭health will improve with increasing‬‭distance from fish farms.‬

‭3.‬ ‭Evaluate changes to‬‭P. oceanica‬‭health under increasing‬‭cumulative fish farm‬
‭activity durations‬

‭H3:‬‭P. oceanica‬‭health will be significantly reduced‬‭with increasing duration of cumulative fish farm‬

‭activity.‬

‭4.‬ ‭Identify high-impact hotspots on Poros‬

‭6‬
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‭Table 1: Table of specific‬‭P. oceanica‬‭health responses in line with each hypothesis (H1-H3) and under‬
‭different test conditions used in this study.‬‭P. oceanica‬‭health is generally hypothesised to decrease under‬
‭current and previous fish farm pressure relative to controls; improve with distance from farms; and decrease‬
‭under increasing durations of cumulative fish farm activity.‬

‭ ‬

‭2. Methods‬
‭2.1 Study Area: ‬
‭This study was conducted on the island of Poros, Greece (37.5206° N, 23.4717° E), over three‬

‭weeks in October 2024. Poros is in the southern Saronic Gulf of the Aegean Sea, 29 nautical miles‬

‭south of Piraeus port, Athens. This island supports a population of 3993, primarily exporting‬

‭tourism (Hellenic Statistical Authority, 2011).‬

‭Poros’s northern coasts have had a long and varied history of fish farming. The first farms arose in‬

‭Poros in the early 1990s, being licensed under a now-illegal governing board. Since then, fish‬

‭farms have been situated in over 12 locations along Poros’s N and NW coasts. Currently, there are‬

‭five active farms on Poros, which have been active for anywhere between 6-35 years (Table 1).‬

‭The main species harvested on Poros are gilthead seabream (‬‭Sparus aurata‬‭) and sea bass‬

‭(‬‭Dicentrarchus labrax‬‭).‬

‭Poros’s 48km-coastline is dominated by monospecific (‬‭P. oceanica‬‭) seagrass meadows that are‬

‭under increasing threat by fish farms (Fig. 1b).‬
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‭2.2 Data Collection‬
‭2.2.1 Seagrass Sampling and Metrics ‬
‭Data was collected across a significant portion of Poros’s coastline, from sites that represented‬

‭three increasing levels of fish farming activity: “control” (i.e. no activity), “previously farmed” and‬

‭“currently farmed” (Fig. 2). Ten sites total were selected to attain replication for each farming level‬

‭where possible within the limited fieldwork period. However, as current farming activity is relatively‬

‭widespread, there was only one exclusively “previously farmed” site in the study area.‬

‭8‬



‭Five sites along the northern coasts were sampled to capture the impacts of active farms,‬

‭excluding an inaccessible offshore fish farm (Fig. 2a). These sites formed the “currently farmed”‬

‭level, where fish farming impacts were expected to be most severe due to sustained farming‬

‭activity.‬

‭A mainland bay located 1km west of Poros (37°31'16.3"N, 23°24'40.0"E) was also included due to‬

‭its comparable ecological conditions. This site hosted an active fish farm between 1989 and 2010‬

‭and therefore represented the "previously farmed" category (see 2.2.3). Given the 14-year‬

‭cessation of farming activity and its distance from active farms, this site was expected to exhibit‬

‭reduced aquaculture pressure and serve as a reference for long-term recovery dynamics.‬

‭Finally, four sites were selected on the southern coasts as the “control” level. However, data from‬

‭potential control site CS1 (Fig. 2a) was discarded as meadows were heavily scarred by anchors,‬

‭and potential sites with a northern aspect were not sampled due to weather. As Poros’s southern‬

‭coast is hydrodynamically isolated from the northern coasts, it remains relatively unaffected by fish‬

‭farms (Kontoyiannis, 2008). The distribution of the seagrass meadows at the control sites is also‬

‭comparable to that of the meadows at the farmed sites in the 1970s (pre-fish farming) and has not‬

‭appeared to change significantly since pre-fish farming times according to Athinaiou‬‭et al.‬‭(2024).‬

‭Hence, these control sites are a reliable reference for healthy meadow conditions prior to fish‬

‭farming activity.‬

‭At each site, two transects were completed by a pair of SCUBA divers (Fig. 3), starting at a fish‬

‭farm, or pseudo-fish farm origin point at the previously farmed and control sites, in parallel with the‬

‭coast to remain within the relatively shallow (0-40m)‬‭P. oceanica‬‭habitat zone. At the currently‬

‭farmed sites, transects typically started ~150m from each active farm perimeter to reduce potential‬

‭conflict with farm operators. Transects extended up to 1.2km, as this is the maximal fish farm‬

‭impact radius reported for‬‭P. oceanica‬‭(Marba‬‭et al.‬‭,‬‭2006). However, this distance was not always‬

‭achieved due to time and weather constraints.‬

‭Both transects sampled a different depth range to ensure natural variation with depth and potential‬

‭depth-dependent fish farm impacts were captured (Kletou‬‭et al.‬‭, 2018) (Fig 3a & 3b). Although,‬

‭studied depth was limited to 25m to reduce dive-related risks (Appendix 2).‬

‭An estimate for each seagrass health metric, a photo quadrat and a depth reading were recorded‬

‭approximately every 5m along each transect by the primary diver to ensure high-resolution‬

‭meadow health changes were captured (Fig. 3c). All metrics were visually estimated in situ by the‬

‭same diver or another diver calibrated against the original diver for consistency. Photo quadrats‬

‭were taken at a fixed distance above the seafloor and calibrated to 1m‬‭2‬ ‭to ensure consistent‬

‭sampling unit area (Fig. 4).‬
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‭Martinez-Crego‬‭et al.‬‭(2008) suggest indicators across different levels of biological organisation are‬

‭needed to holistically monitor seagrass conditions.  Therefore, three widely-used descriptors were‬

‭used to assess seagrass health: maximal leaf length (individual-level), meadow cover‬

‭(population-level) and epiphyte cover (community-level) (Pergent-Martini‬‭et al.‬‭, 2006;‬

‭Martinez-Crego‬‭et al.‬‭, 2008). Martinez-Crego‬‭et al.‬‭(2008) posit that these descriptors are strong‬

‭indicators of anthropogenic stress, and decreases in maximal blade length and meadow cover and‬

‭epiphyte overgrowth are widely associated with aquaculture activity (Delgado‬‭et al.‬‭, 1999; Ruiz‬‭et‬

‭al.‬‭, 2001; Holmer‬‭et al.‬‭, 2008). Due to‬‭P. oceanica‬‭protections in this region (WFD, 2000), only‬

‭non-invasive methods of data collection were used, meaning visually-estimated epiphyte cover‬

‭served as a proxy for epiphyte biomass, which is the preferred metric (Buia‬‭et al.‬‭, 2004).‬‭Seasonal‬

‭variability was not a concern as sampling occurred at a fixed season.‬

‭Maximal leaf length was recorded per 1m‬‭2‬‭-quadrat (Fig.‬‭5a). Meadow cover was recorded as a‬

‭percentage of the 1m‬‭2‬‭-quadrat area covered in live‬‭seagrass (Fig. 5b) and estimates were verified‬

‭using a 20-photo sample in‬‭ImageJ‬‭(Scheider‬‭et al.‬‭,‬‭2012). Epiphyte cover was recorded as a‬

‭percentage of the total meadow cover (i.e. live and dead) in each quadrat (Fig. 5c), then weighted‬

‭by total meadow cover to account for size variation.‬
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‭2.2.2 Post Processing Field Data: ‬
‭Each photo quadrat was geotagged using‬‭GeoSetter‬‭(Version‬‭3.5.3; Schmidt, 2024), which‬

‭matched each photo to GPS coordinates recorded based on time. Geotagged photos were‬

‭cross-referenced with seagrass health data, giving a position to each data record, and were‬

‭visualised spatially in mapping software‬‭ArcGIS Pro‬‭(Version 3.4; Esri, 2024).‬

‭2.2.3 Fish Farm Records:‬
‭Historic satellite imagery was used to complete a record of each fish farm on Poros with guidance‬

‭from local experts. Images were examined across‬‭Google‬‭Earth Pro‬‭(Version 7.3.6.10201; Google,‬

‭2025),‬‭Copernicus Open Access Hub‬‭(European Space‬‭Agency, 2025)‬‭and‬‭World Imagery‬

‭Wayback‬‭(Esri, 2025), to estimate farm introductions‬‭and removals to the highest precision‬

‭(nearest 6 months). Whenever a fish farm was introduced to a new location, a polygon marking its‬

‭area and location was created on‬‭Google Earth Pro‬‭(Fig. 1) and key temporal information was‬

‭recorded (Table 2).‬

‭Due to extensive farming history, Poros’s coasts likely experience the combined effects of multiple‬

‭farms. Thus, the maximal 900m fish farm impact radius estimated in Analysis 3.2.2‬‭was applied to‬

‭each farm in‬‭ArcGIS Pro‬‭(‘Buffer’ tool), excluding‬‭land (‘Clip’ tool). Data points in each radius‬

‭intersection zone were assigned a cumulative duration value based on the total of the overlapping‬

‭farms (Fig. 6), assuming the effect of time since a farm was removed had relatively insignificant‬

‭effect on seagrass health based on Analysis 3.1.1 and 3.1.2, and health within 900m was relatively‬

‭constant and below control levels (Analysis 3.2.1, 3.2.2). Each farm was assumed to be active (i.e.‬

‭supporting fish stocks) when visible and have similar annual discharge levels‬‭,‬‭as‬‭farm size did not‬

‭vary significantly and no data detailing farm-specific practices (e.g. fodder type, yield) was‬

‭available.  ‬

‭ ‬

‭ ‬

‭Table 2: Record of fish farms on Poros as of Dec. 2024. Active farms are highlighted (see Fig. 1).‬

‭14‬

‭Fish Farm‬
‭Identity‬

‭Duration‬
‭(years)‬

‭Time Since Removed‬
‭(years)‬ ‭Longitude‬ ‭Latitude‬

‭M1‬ ‭21‬ ‭14‬ ‭37°31'13.30"N‬ ‭23°24'38.10"E‬
‭NW1‬ ‭0.5‬ ‭11.5‬ ‭37°32'10.74"N‬ ‭23°28'22.26"E‬
‭NW2‬ ‭4.5‬ ‭6‬ ‭37°31'35.83"N‬ ‭23°26'15.55"E‬
‭NW3‬ ‭0.5‬ ‭11.5‬ ‭37°31'36.35"N‬ ‭23°26'21.55"E‬
‭NW4‬ ‭4.5‬ ‭6‬ ‭37°31'36.15"N‬ ‭23°26'41.72"E‬
‭NW5‬ ‭6‬ ‭NA‬ ‭37°31'58.04"N‬ ‭23°27'27.46"E‬
‭NW6‬ ‭6‬ ‭NA‬ ‭37°31'58.66"N‬ ‭23°27'36.17"E‬
‭NW7‬ ‭9‬ ‭13‬ ‭37°32'3.35"N‬ ‭23°27'55.39"E‬
‭NW8‬ ‭5.5‬ ‭6.5‬ ‭37°31'37.34"N‬ ‭23°26'40.60"E‬
‭NW9‬ ‭6.5‬ ‭NA‬ ‭37°32'12.66"N‬ ‭23°27'55.80"E‬
‭NW10‬ ‭10‬ ‭13‬ ‭37°32'8.24"N‬ ‭23°28'1.75"E‬
‭NW11‬ ‭32‬ ‭NA‬ ‭37°32'7.01"N‬ ‭23°28'26.05"E‬
‭N1‬ ‭35‬ ‭NA‬ ‭37°33'1.27"N‬ ‭23°28'54.43"E‬
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‭ ‬

‭Distances were generated from each spatially referenced data point (n= ~2000) to each fish farm‬

‭perimeter (n=13) using the ‘Euclidean Distance’ and ‘Optimal Path to Line’ analysis tools in‬‭ArcGIS‬

‭Pro‬‭with 2m cell size (Fig. 7). Land was masked so‬‭estimations were through water only. Within the‬
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‭bays adjacent to CF3 and CF4 (Fig. 2a), the farms changed shape and placement slightly over‬

‭time. The most recent placements could be seen to the highest resolution and so were used to‬

‭generate distance estimates for those sites. ‬

‭ ‬

‭2.2.4 Historic Meadow Extent‬
‭Subsequent to field survey, aerial imagery was obtained from 1972-1992 to determine historic‬

‭seagrass meadow extent at the studied sites pre-fish farming (General State Archives of Greece,‬

‭2025). This data was not accessible prior to March 2025 and thus could not inform sampling site‬

‭selection. Coastline sections in each image were identified then matched and overlaid on a 2025‬

‭Airbus satellite map (Airbus Defence and Space, 2025) on‬‭Google Earth Pro‬‭. Patches of visible‬

‭seagrass were outlined, forming polygons with spatial references that were used to filter the‬

‭original dataset via the ‘Select By Location’ tool in‬‭ArcGIS Pro‬‭(Fig 2b & 2c). Only data points‬

‭within the estimated historic meadow area were included in analyses. As a result, the observed ‘0’s‬

‭in meadow cover in the filtered dataset are inferred to represent losses in seagrass cover or‬

‭small-scale natural within-meadow cover variability. Meadow areas were assumed to be‬‭P.‬

‭oceanica‬‭, as it is the primary species on Poros and‬‭forms monospecific meadows (Larkum‬‭et al.‬‭,‬

‭2006).‬
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‭2.3 Data Analysis ‬
‭As seagrass conditions have widely been shown to vary with depth (Martinez-Crego‬‭et al.‬‭, 2008;‬

‭Rountos‬‭et al.‬‭, 2012; Kletou‬‭et al.‬‭, 2018), depth‬‭was included as a covariate in all models and was‬

‭included as an interaction term for comparisons between farming levels to determine‬

‭depth-dependent recovery. For all models, α=0.05.‬

‭2.3.1 Effect of Farming Level on‬‭P. oceanica‬‭Health and‬‭Recovery Potential‬
‭To determine the relative impact of current and previous farming activity and whether fish farm‬

‭impacts improved after activity cessation, seagrass health (meadow cover, maximal leaf length and‬

‭epiphyte cover) was compared between each fish farming level (currently farmed, previously‬

‭farmed and control). To ensure consistency of fish farm impacts at each farming level, seagrass‬

‭health data was compared among the constituent sampling sites at each farming level, before‬

‭being pooled into each farming level (Fig. 9-11).‬

‭Meadow cover and maximal leaf length data in both farmed categories was filtered to within 650m‬

‭of a fish farm, an intermediate and somewhat conservative spatial estimate for farm impact based‬

‭on the 400m maximal impact extent reported by Holmer‬‭et al.‬‭(2008) and the 1.2km estimate by‬

‭Marba‬‭et al.‬‭(2006), and the impacted distances observed‬‭in Analysis 3.2.1 and 3.2.2. Epiphyte‬

‭cover data was filtered to 450m from farms based on the aforementioned 400m estimate and the‬

‭450m impact range observed in Analysis 3.2.3.‬

‭A beta regression with “logit” link on‬‭R‬‭(Version‬‭4.5.0; R Core Team, 2025) was used for meadow‬

‭cover and epiphyte cover analyses, due to the bounded nature of these variables (Zuur‬‭et al.‬‭,‬

‭2007), using the betareg package (Cribari-Neto & Zeileis, 2010). To accommodate the‬

‭requirements of the beta distribution, percentage estimates were converted to proportions then‬

‭compressed using the transformation:‬

‭Proportion Meadow Cover = Percentage Meadow Cover × 0.999 + 0.005‬

‭The beta regression models were as follows:‬

‭Among Sampling Sites:‬

‭Proportion Meadow Cover ~ Sampling Site Identity + Depth‬

‭Proportion Epiphyte Cover ~ Sampling Site Identity + Depth‬

‭Between Farming Levels:‬

‭Proportion Meadow Cover ~ Farming Level + Depth + Farming Level*Depth‬

‭Proportion Epiphyte Cover ~ Farming Level + Depth + Farming Level*Depth‬

‭As maximal leaf length had unequal variance of residuals, a linear model with robust standard‬

‭errors was used for comparisons among sampling sites and between farming levels (White, 1980),‬

‭from the sandwich package (Zeileis, 2004).‬
‭17‬



‭Maximal Leaf Length ~ Sampling Site Identity + Depth‬

‭Maximal Leaf Length ~ Farming Level + Depth + Farming Level*Depth‬

‭To identify significant differences between specific sampling sites and each farming level in each of‬

‭the above models, Tukey-adjusted pairwise comparisons of estimated marginal means were‬

‭conducted (emmeans package; Lenth, 2024).‬

‭2.3.2‬ ‭Spatial Extent of Current Farming Impacts to‬‭P. oceanica‬‭Health ‬
‭To assess the spatial extent of fish farming impacts, the health of‬‭P. oceanica‬‭at increasing‬

‭distances up to 900m from fish farm perimeters were compared to reference values from control‬

‭sites. Data from Site‬‭b‬‭was excluded as multiple fish‬‭farms have been present here (Fig. 2d),‬

‭obscuring health-distance relationships. Thus, only data from zones minimally affected by historic‬

‭farming activity (a, c, d in Fig. 2d) were selected. Distances from sampling sites to nearest current‬

‭fish farms (derived in 2.2.3) were discretised into 150m bins to allow for comparison with controls.‬

‭The 0-150m category was omitted due to lack of data (n=8).‬

‭Meadow cover and epiphyte cover were statistically compared across distance categories,‬

‭respectively, using beta regression with “logit” link.‬

‭Proportion Meadow Cover ~ ‘Distance to Nearest Farm’ Category + Depth‬

‭Proportion Epiphyte Cover ~ ‘Distance to Nearest Farm’ Category + Depth‬
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‭A linear model with robust standard errors was used for maximal leaf length.‬

‭Maximal Leaf Length ~ ‘Distance to Nearest Farm’ Category + Depth‬

‭To identify significant differences between distance categories in each model, Tukey-adjusted‬

‭pairwise comparisons of estimated marginal means were conducted.‬

‭2.3.3‬ ‭Effect of Cumulative‬‭Fish Farm Activity Duration‬‭on‬‭P. oceanica‬‭Health‬
‭To assess the relationship between‬‭P. oceanica‬‭health‬‭and cumulative fish farming duration, a beta‬

‭regression was fitted to mean proportions of meadow cover, and maximal leaf length, across‬

‭10-year duration bins between 10-70 years (derived from 2.2.3). No sites were subject to <10‬

‭years cumulative farm activity. Epiphyte cover was omitted due to its varied response with site‬

‭history (see 3.1.3). ‬

‭Proportion Meadow Cover ~ Duration Category + Depth‬

‭Maximal Leaf Length ~ Duration Category + Depth‬

‭To identify significant differences between the duration groups in each model, Tukey-adjusted‬

‭pairwise comparisons of estimated marginal means were conducted.‬

‭2.3.4‬ ‭Hotspots of Fish Farming Impacts‬
‭To identify geographic hotspots of fish farming impacts on Poros, 900m impact radius derived from‬

‭Analysis 3.2 was plotted around each farm on a map in‬‭ArcGIS Pro‬‭. As impacts to‬‭P. oceanica‬‭can‬

‭be sustained long-term (Section 3.1; Delgado‬‭et al.‬‭,‬‭1999), these impact radii were applied to both‬

‭currently and previously active farms. To identify future impacted locations, an impact zone around‬

‭planned expansion zones was estimated using a 900m buffer.‬

‭3. Results  ‬
‭3.1 Effect of Farming Level on‬‭P. oceanica‬‭Health‬‭(Recovery Potential)‬
‭Full outputs of models: Appendices 3-5‬

‭3.1.1 Maximal Leaf Length (Individual-Level Recovery)‬
‭Pairwise comparisons of model-estimated marginal means indicated maximal leaf length was‬

‭generally not significantly different among control sites, nor among currently farmed sites (Fig. 9a).‬

‭However, maximal leaf length was marginally lower at control site‬‭f‬‭vs.‬‭e‬‭(β=-6.38, p=0.0121) and‬

‭significantly higher at currently farmed site‬‭a‬‭ relative‬‭to site‬‭c‬‭(β=13.5, p=0.0033).‬

‭Compared to the control level, leaves were significantly shorter at the previously farmed level‬

‭(β=-18.4,‬‭p‬‭<.0001) and currently farmed level (β=-29.7,‬‭p‬‭<.0001) (Fig. 9b). However, maximal leaf‬

‭length at the previously farmed level was significantly improved compared to the currently farmed‬

‭level (β=11.3, p<.0001). Maximal leaf lengths were 58% lower when currently farmed and 36%‬

‭lower when previously farmed, relative to controls (Table 3).‬
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‭The beta regression showed that depth did not significantly influence maximal leaf length.‬

‭However, significant interaction effects were observed with depth at the previously farmed level‬

‭(β=1.96,‬‭p‬‭<.0001), with leaf lengths increasing with‬‭depth and approaching control levels by 17m.‬

‭Farming Level‬ ‭Maximal Leaf Length‬
‭Estimated Marginal‬
‭Mean (cm)‬

‭Standard Error of‬
‭Mean‬

‭% Decrease vs‬
‭Control‬

‭Currently Farmed‬ ‭21.2‬ ‭1.25‬ ‭58.30%‬

‭Previously Farmed‬ ‭32.6‬ ‭1.93‬ ‭36.00%‬

‭Table 3: Table of estimated marginal means, standard error of means and the percentage decrease relative‬
‭to the control level for‬‭P. oceanica‬‭maximal leaf‬‭length at each farming level (currently farmed, previously‬
‭farmed, control).‬

‭Control‬ ‭50.9‬ ‭0.89‬ ‭-‬
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‭3.1.2  Meadow Cover (Population-Level Recovery)‬
‭Pairwise comparisons of model-estimated marginal means revealed meadow cover did not‬

‭significantly differ between control sites (‬‭e, f;‬‭f, g‬‭), nor currently farmed sites (‬‭b–d‬‭). However,‬

‭meadow cover at control site‬‭e‬‭was significantly lower‬‭than at‬‭f‬‭(β=-0.0957,‬‭p‬‭=0.0419)‬‭and‬
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‭significantly higher at‬‭currently farmed site‬‭a‬‭vs.‬‭b‬‭and‬‭c‬‭(‬‭p‬‭<0.01). Overall, the results among sites‬

‭in each farming level were relatively homogeneous and meadow cover across the farmed sites‬

‭was significantly lower than at the control level (p<0.05) (Fig. 10a).‬

‭The beta regression model found that depth was not significantly associated with meadow cover‬

‭and there was no significant interaction between farming level and depth. Pairwise comparisons of‬

‭model-estimated marginal means showed that meadow cover was significantly lower at the‬

‭currently farmed level and previously farmed level compared to controls (β=-0.252, p< .0001;‬

‭β=-0.246, p< .0001) (Fig. 10b), with losses in cover estimated at 46% and 45%, respectively (Table‬

‭4).‬

‭There was no significant difference between the currently farmed and previously farmed levels.‬

‭Farming Level‬ ‭Proportional Meadow‬
‭Cover Estimated‬
‭Marginal Mean‬

‭Standard Error of‬
‭mean‬

‭% Decrease vs.‬
‭Control‬

‭Currently farmed‬ ‭0.296‬ ‭0.0151‬ ‭45.90%‬

‭Previously farmed‬ ‭0.302‬ ‭0.0184‬ ‭44.80%‬

‭Table 4: Table of estimated marginal means, standard error of means and the percentage decrease relative‬
‭to the control level for proportional‬‭P. oceanica‬‭meadow cover at each farming level (currently farmed,‬
‭previously farmed, control).‬

‭Control‬ ‭0.547‬ ‭0.0152‬ ‭–‬
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‭3.1.3 Epiphyte Cover (Community-Level Recovery)‬
‭Tukey-adjusted pairwise comparisons of model-estimated marginal means showed that epiphyte‬

‭cover did not vary significantly among the currently farmed sites (‬‭a, c‬‭) nor between control sites‬‭e‬

‭vs.‬‭g‬‭and‬‭f‬‭vs.‬‭g‬‭. Although, control site‬‭f‬‭exhibited‬‭significantly lower epiphyte cover than control‬

‭site‬‭e‬‭(‬‭β‬‭=-0.10, p<0.001). Therefore, epiphyte cover‬‭was relatively consistent among sites within‬

‭each farming level (Fig. 11a).‬

‭The beta regression showed the previously farmed level had significantly higher epiphyte cover‬

‭compared to both other levels, at approximately 2-fold that of the control level (‬‭β‬‭=0.973,‬‭p‬‭<.0001)‬

‭and 3-fold that of the currently farmed level (Fig. 11b; Table 5) The currently farmed level was‬

‭significantly lower than the control level (‬‭β‬‭=-0.446,‬‭p‬‭=0.0183).‬

‭Depth was significantly associated with each farming level (‬‭p‬‭<.001) and there were strong and‬

‭opposing interaction effects between farming level and depth. In the previously farmed level,‬

‭epiphyte cover increased more steeply with depth than the control level (‬‭β‬‭=0.117,‬‭p‬‭<.0001).‬

‭Whereas, in the currently farmed level, epiphyte cover decreased with depth (Fig. 11b).‬

‭Table 5: Table of estimated marginal means, standard error of means and the percentage decrease relative‬
‭to the previously farmed level for proportional‬‭P.‬‭oceanica‬‭epiphyte cover at each farming level (currently‬
‭farmed, previously farmed, control).‬
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‭Farming Level‬ ‭Proportional‬
‭Epiphyte Cover‬
‭Estimated‬
‭Marginal Mean‬

‭Standard Error of‬
‭Means‬

‭% Difference vs‬
‭Previous Farm‬

‭% Difference‬
‭vs Control‬

‭Currently‬
‭farmed‬

‭0.278‬ ‭0.0138‬ ‭–67.1%‬ ‭-29.1%‬

‭Previously‬
‭farmed‬

‭0.845‬ ‭0.0149‬ ‭-‬ ‭+116%‬

‭Control‬ ‭0.392‬ ‭0.0106‬ ‭–53.6%‬ ‭-‬
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‭ ‬

‭3.2 Spatial Impacts of Fish Farming to‬‭P. oceanica‬‭Health‬
‭Full outputs of models: Appendices 6-8‬

‭3.2.1 Maximal Leaf Length‬
‭Pairwise comparisons of model-estimated marginal means showed that maximal leaf length at all‬

‭distance categories within 900m of fish farms was significantly lower than the control group (Fig‬
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‭12a). Within 600m of farms, maximal leaf length did not significantly differ between distance‬

‭categories and reached a minimum estimated marginal mean of 18.8cm (SE=2.72), representing a‬

‭63% decrease relative to controls (EMM= 50.4, SE=0.89). Even at 750-900m, mean maximal leaf‬

‭length was 32% lower (EMM=34.4, SE=4.83) than at controls.‬

‭The relative proportion of higher-length leaves vs. lower-length leaves gradually increased with‬

‭distance (Fig. 12b) and 0% of samples within 900m of farms exceeded 60cm.‬
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‭ ‬

‭ ‬

‭3.2.2 Meadow Cover‬
‭Fig. 13 shows that meadow cover slightly increased up to 900m from farms. Pairwise comparisons‬

‭of model-estimated marginal means indicated each distance category up to 750m had significantly‬
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‭reduced meadow cover relative to the control sites (p<.05). Meadow cover was lowest at‬

‭300-450m (‬‭β‬‭=-0.291,‬‭p‬‭<.0001), representing a 53%‬‭decrease relative to controls (EMM=0.263,‬

‭SE=0.0235; EMM=0.554, SE=0.0159). Mean meadow cover between 750-900m was still 30%‬

‭lower than control levels, though this difference was not found to be statistically significant‬

‭(EMM=0.388, SE=0.0696,‬‭β‬‭=-0.166, p=0.186). Notably,‬‭meadow cover in the 150-300m group was‬

‭significantly higher than the 300-450m group (‬‭β‬‭=0.151,‬‭p‬‭<.0001).‬

‭Fig. 13b shows a positive association between proportion of high meadow cover values (80-100%)‬

‭with distance. 0% of samples reached high cover within 150-300m from farms, rising to 10%‬

‭high-cover samples at 750-900m, and 17% high-cover values at control sites.‬

‭ ‬
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‭3.2.3 Epiphyte Cover‬
‭Pairwise comparisons of model-estimated marginal means revealed significantly reduced epiphyte‬

‭cover up to 450m from fish farms relative to the control group (p<.01) (Fig. 14). Beyond 450m,‬

‭there was no significant difference in epiphyte cover relative to the control group.‬

‭ ‬

‭3.3 Effect of Cumulative Fish Farming Duration on‬‭P. oceanica‬‭Health‬
‭Full outputs of models: Appendices 9-10‬
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‭3.3.1 Maximal Leaf Length‬
‭Cumulative fish farming duration had a strong negative effect on maximal leaf length, with pairwise‬

‭comparisons of model-estimated marginal means showing significant losses after 10-20 years of‬

‭cumulative fish farm activity relative to the control group (p<.0001) (Fig. 15). Within 20 years,‬

‭maximal leaf length decreased by 46% (EMM=27.36, SE=1.85), reaching an 85% decrease after‬

‭50 years (EMM=7.87, SE=6.86), relative to the control group (EMM=50.65, SE=0.915).‬

‭Figure 15:‬‭P. oceanica‬‭maximal leaf length decreases‬‭significantly as the cumulative duration of fish farm‬
‭impact increases. Original data points are shown. Stars represent model-estimated marginal means and‬
‭intervals represent the 95% confidence interval for these means.‬

‭3.3.2 Meadow Cover‬
‭Cumulative fish farming duration was associated with significant losses in meadow cover (Fig 16).‬

‭Pairwise comparisons of model-estimated marginal means indicated significant losses over 10-70‬

‭years of farming relative to the control group (p<.001). Within 20 years of fish farm introduction,‬

‭28% meadow cover was lost (EMM=0.40, SE=0.003), increasing to 60% meadow cover loss after‬

‭50 years (EMM=21.9, SE=0.034), relative to the control group (EMM=0.557, SE=0.016).‬
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‭3.4 Hotspots of Fish Farming Impacts‬
‭Historic and current fish farm impact zones (Fig. 17) extend over the N and NW coast of Poros and‬

‭mainland site, covering an area of 8.53km‬‭2‬‭and 17km‬‭of coastline. A particularly high intensity of‬

‭impact can be seen in the central northern zone, where 70 years of cumulative farming activity has‬

‭occurred. The estimated impact zone from future farming activity may increase the spatial extent of‬

‭impact by 83%, to 15.6km‬‭2‬‭, potentially intensifying‬‭current farming impacts and affecting seagrass‬

‭meadows along an additional 3.2km of relatively undisturbed coastline.‬

‭4. Discussion ‬
‭One key finding of this study is that fish farming activity is associated with long-term reduced‬

‭seagrass health, particularly in shallow waters. The results in 3.1 revealed meadow cover declined‬

‭by 46% near active farms and remained similarly depressed 14 years after fish farm removal‬

‭relative to healthy meadows (Fig. 10b). Maximal leaf length was also reduced by 36% at previously‬
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‭farmed sites, though approached near-healthy levels in deep waters (~17m depth) (Fig. 9b). These‬

‭results align with Hypothesis 1a, and 2a at the individual-level (Table 1). This suggests that nutrient‬

‭loading from aquaculture practices may negatively and irreversibly impact‬‭P. oceanica‬‭health. This‬

‭aligns with findings by Sanz-Lázaro and Marín (2006), which suggest that aquaculture effluent can‬

‭lead to persistent anoxic conditions in the sediment. Furthermore, Delgado‬‭et al.‬‭(1999) reported‬

‭depressed‬‭P. oceanica‬‭health three years after farm‬‭removal, hypothesising that nutrient-rich‬

‭sediments are easily resuspended in denuded meadows, thus increasing dissolved nutrient‬

‭availability and increasing light competition with epiphytes. Coupled with‬‭P. oceanica’‬‭s low growth‬

‭rate, this may explain the long-term nature of health declines (Marba‬‭et al.‬‭, 2004). Previous‬

‭research also suggests that water exchange is limited in shallow zones (Simonetti‬‭et al.‬‭, 2022).‬

‭Thus, the relatively quicker removal of nutrient stress at depth may underlie the individual-level‬

‭depth-dependent recovery pattern, and which may not yet be detected on a population level due to‬

‭the relatively slower response rate of meadow cover to environmental change (Larkum‬‭et al.‬‭, 2006;‬

‭Martinez-Crego‬‭et al.‬‭, 2008). Thus, this study provides‬‭evidence for sustained fish farming impacts‬

‭over four-times longer than the historic literature, reinforcing the irreversibility of damage to‬‭P.‬

‭oceanica‬‭meadow environments on human timescales. ‬

‭Another key finding is that proximity to fish farms is associated with significantly reduced‬‭P.‬

‭oceanica‬‭health, confirming Hypothesis 2. The results‬‭in section 3.2.2 showed, compared to‬

‭healthy reference meadows located over 6000m away, meadow cover was up to 53% lower within‬

‭450m of farms and up to 900m maximal leaf length was significantly lower (32%) (Fig 12). Elevated‬

‭health at 150-300m is likely attributable to overrepresentation of data from site‬‭a‬‭, which has‬

‭experienced relatively shorter farm activity (NW5; Table 2). These results suggest fish farming‬

‭impacts are most severe near to farms and can impact‬‭P. oceanica‬‭at a population- and‬

‭individual-level over large distances beyond farm boundaries. These findings are consistent with‬

‭previous research indicating that nutrient inputs (e.g. phosphorus, nitrogen) are highest directly‬

‭under fish farm cages, with multi-study assessments by Pergent-Martini‬‭et al.‬‭(2006) and Holmer‬‭et‬

‭al.‬‭(2008), recommending siting of fish farms beyond‬‭200m and 400m from‬‭P. oceanica‬‭meadows,‬

‭respectively, to avoid toxic effects. By comparison, the 900m radius identified in this study‬

‭represents a large area of potential impact. Highly variable reports of spatial aquaculture impact on‬

‭P. oceanica‬‭are often attributed to local hydrodynamism‬‭and discharge levels (Holmer‬‭et al.‬‭, 2007;‬

‭Ruiz‬‭et al.‬‭, 2010). As Poros is relatively sheltered‬‭within the Saronic Gulf (Kontoyiannis, 2010),‬

‭water circulation is reduced, hindering the movement of fish farm effluents away from seagrass‬

‭meadows. The farms on Poros are also relatively close (within 100m) to shore (Fig. 2), limiting‬

‭dissipation of nutrients in deep-water currents (Simonetti‬‭et al.‬‭, 2012). As limited data are available‬

‭regarding farm-specific practices (e.g. annual fodder input, chemical usage) for Poros, and the‬

‭relationship between seagrass health and specific aquaculture practices remains poorly‬

‭understood, the significance of this variable is difficult to interpret and requires further investigation.‬

‭Overall, these results provide evidence for aquaculture-driven health declines over a larger spatial‬
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‭scale than typically reported, necessitating updated management recommendations for farms‬

‭situated in shallow, sheltered zones like on Poros. Although, as sampling depth was limited, future‬

‭research incorporating deeper sampling (30-40m) could enhance understanding of the full spatial‬

‭extent over which aquaculture activities impact‬‭P.‬‭oceanica‬‭.‬

‭Notably, this study identified reduced epiphyte cover near to currently active farms, contrary to H1a‬

‭and H2 (Table 1). Within 450m of active farms, epiphyte cover was significantly reduced (29%)‬

‭relative to healthy reference meadows. This finding is surprising as nutrient elevation in the water‬

‭column and reductions in meadow cover and leaf length, as seen in this study, have been‬

‭frequently linked to epiphyte overgrowth (Pergent-Martini‬‭et al.‬‭, 2006). However, Pitta‬‭et al.‬‭(2006)‬

‭posit that nutrient transfer up the food chain is particularly efficient in the oligotrophic‬

‭Mediterranean. This means that high epiphyte growth stimulated by fish farm introduction may be‬

‭rapidly consumed by grazing organisms (Ruiz‬‭et al.‬‭,‬‭2001). Due to the abundant food source‬

‭(epiphytes), herbivory levels also often exceed natural levels and have resulted in overgrazing‬

‭(Ruiz‬‭et al.‬‭, 2001), explaining the low epiphyte levels‬‭recorded.‬

‭In contrast, epiphyte cover was elevated after farm removal, contradicting Hypothesis 1c. Section‬

‭3.1.3 showed epiphyte cover was 2-times and 3-times higher after previous farming activity‬

‭compared to control and currently farmed meadows, respectively. As nutrients are transient in the‬

‭water column and epiphyte growth requires water-borne nutrients, fish farm discharges do not‬

‭explain epiphyte elevation long after farm removal (Perez‬‭et al.‬‭, 2008). However, no specific‬

‭natural or anthropogenic sources of nutrients unique to this area have been identified, primarily‬

‭due to lack of local environmental data. Consequently, the potential influence of site-specific‬

‭nutrient inputs on elevated epiphyte cover cannot be ruled out. Alternatively, as epiphyte cover‬

‭results at the previously farmed site contradict most existing literature and challenge other findings‬

‭in this study, it may be the case that visual estimation does not reliably reflect epiphyte loads on‬

‭seagrass (Martinez-Crego‬‭et al.‬‭, 2008) and likely‬‭bias estimations towards epiphyte loads at the‬

‭leaf tips. Hence, the typical method of epiphyte extraction and biomass quantification (Buia‬‭et al.‬‭,‬

‭2008) should be favoured in seagrass monitoring studies where invasive methods are possible.‬

‭This study also identified a negative relationship between long-term cumulative duration of fish‬

‭farming activity and‬‭P. oceanica‬‭health, in agreement‬‭with Hypothesis 3, with most severe declines‬

‭observed at the individual-level. Maximal leaf length nearly halved (46%) and 28% meadow loss‬

‭occurred after 10-20 years of fish farming activity. This suggests that‬‭P. oceanica‬‭populations have‬

‭limited resistance to fish farming impacts and the cumulative effects from multiple farms can‬

‭worsen health outcomes. These findings are consistent with previous research indicating that even‬

‭after a year of fish farming activity,‬‭P. oceanica‬‭vertical growth is stunted (Marba‬‭et al.‬‭, 2006),‬‭while‬

‭Taskin‬‭et al.‬‭(2024) reported total loss after a decade.‬‭As Martinez-Crego‬‭et al.‬‭(2008) suggest‬

‭environmental change first presents through plant physiology and morphology, the relatively high‬

‭maximal leaf length reductions over the studied durations thus emphasise the magnitude of‬
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‭long-term environmental changes induced by farms. Additionally, this study’s results conservatively‬

‭estimate the magnitude of health declines as a large spatial footprint of farming activity (900m) was‬

‭used for cumulative duration estimations and did not account for proximity-intensified health‬

‭declines nor potential recovery. Thus, future long-term health assessments are critical to establish‬

‭the adaptive potential of‬‭P. oceanica‬‭and identify‬‭temporal tipping points at which losses may‬

‭become irreversible. Overall, these findings contribute important new evidence by quantifying fish‬

‭farming impacts over long timescales, highlighting the vulnerability of‬‭P. oceanica‬‭to short- and‬

‭long-term disturbance.‬

‭This study has also identified the northern coasts of Poros as hotspots for seagrass loss and‬

‭degradation (Fig. 14), currently and into the future. These zones have experienced up to 70 years‬

‭of cumulative farming activity, resulting in up to 85% lower maximal leaf length and 60% loss in‬

‭meadow cover (see 3.3). Under expansion plans, the impacted zone may increase by 83%,‬

‭affecting 3.2km of Poros’s remaining coastline. Hence, fish farm expansions in this region may‬

‭increase pressure on currently impacted zones and initiate health declines in relatively unaffected‬

‭meadow areas. Importantly, these are preliminary estimates of future impacts, the magnitude and‬

‭spatio-temporal scale of potential declines depending on the size, number, inputs and siting of‬

‭future farms (Ruiz‬‭et al.‬‭, 2010; Kalantzi‬‭et al.‬‭,‬‭2021). Climate change has also been found to‬

‭interact synergistically with eutrophication impacts (Krishna‬‭et al.‬‭, 2025), so in combination with‬

‭farm expansion plans, may result in even more extreme health declines in future. Thus, it is‬

‭imperative that multi-stressor interactions are further investigated in the warming Mediterranean‬

‭(Chefaoui‬‭et al.‬‭, 2018). Overall, the fate of‬‭P. oceanica‬‭on Poros depends on‬

‭conservation-conscious decision-making, particularly regarding fish farm management.‬

‭Limitations‬

‭As Poros’s eastern side is subject to relatively destructive hydrodynamic conditions (Kontoyiannis,‬

‭2010), the southeastern control sites may experience increased water circulation and nutrient‬

‭turnover, potentially altering‬‭P. oceanica‬‭growth‬‭relative to currently farmed sites in the north-west‬

‭(Fig. 3; Panayotidis‬‭et al.‬‭, 2022). However, as all‬‭sites were located near Poros and followed the‬

‭same sampling methodology, most significant environmental factors influencing seagrass health‬

‭(Ticina‬‭et al.‬‭, 2020) were controlled for, such as‬‭sediment type and depth. Health among currently‬

‭farmed sites on different coasts (N vs. NW) was also relatively homogeneous (3.1). Thus, the‬

‭relative contribution of coast-dependent hydrodynamics to differences observed between farming‬

‭levels is likely low.‬

‭Furthermore, only a single replicate for the “previously farmed” level was available (Fig. 2) and may‬

‭experience additional anthropogenic stress due to its proximity (~500m) to the daily Poros-Piraeus‬

‭ferry route (Boudouresque‬‭et al.‬‭, 2009). Therefore,‬‭the results of this study may underestimate the‬

‭recovery potential of‬‭P. oceanica‬‭.‬
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‭Pollution and mechanical damage can also reduce seagrass health (Boudouresque‬‭et al.‬‭, 2009). A‬

‭sewage discharge point was identified 1.3km from site‬‭a‬‭(Fig. 2). This point’s entering load (383‬

‭tons) represented 1/3 annual fish farm discharge on Poros (European Environment Agency, 2023;‬

‭Municipality of Poros, 2025). Considering this and the maximal 900m farm impact radius (3.2), the‬

‭mobilisation of sewage pollution into site‬‭a‬‭is unlikely,‬‭evidenced by this site’s relative health‬

‭among currently farmed sites (see 3.1), but must be considered. Additionally, no sampled sites‬

‭showed signs of anchoring damage, and minimal agricultural activity is recorded on Poros‬

‭(Hellenic Statistical Authority, 2011).‬

‭Overall, some consideration for natural variability and other anthropogenic stressors should be‬

‭made when interpreting the results of this study, but are not likely to underlie the key trends‬

‭identified. The spatio-temporal associations of seagrass health with aquaculture infrastructure‬

‭further imply that fish farming is the primary driver of health declines reported in this study.‬

‭Conclusion‬

‭Overall, this study provides clear evidence of the negative effects of fish farming on the seagrass‬

‭Posidonia oceanica‬‭, demonstrating significant reductions‬‭in individual-level and population-level‬

‭meadow health, as well as changes to community-level dynamics, in areas influenced by both‬

‭current and historical aquaculture activity.‬‭P. oceanica‬‭health generally did not improve after 14‬

‭years, though showed some individual-level recovery with depth. Significant health reductions‬

‭extended over a large spatial scale (900m) from fish farms. Health continued to decline under‬

‭increasing cumulative fish farm duration and significant health reductions were detectable after 10‬

‭years. As northern Poros has experienced maximal fish farming intensity and is targeted by‬

‭expansion plans,‬‭P. oceanica‬‭meadows in this region‬‭are particularly threatened.‬

‭These findings underscore the need for improved fish farm management: future expansion of‬

‭aquaculture should avoid‬‭P. oceanica‬‭habitats, particularly‬‭in shallow, sheltered coastal zones, to‬

‭maximise conservation outcomes.‬
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‭equipment, direct liaison with the dive team, and management of a project budget of approximately‬

‭£13,000.‬

‭Due to seasonal constraints on dive safety, fieldwork was limited to a three-week window in‬

‭October 2024. Despite time pressures and limited access to historical records—partly due to‬

‭language barriers—I developed a robust, non-invasive methodology suitable for visual data‬

‭collection.‬

‭As a non-qualified research diver, I led the field operations from the surface and via snorkel,‬

‭instructing a local dive team and Oxford-based research diver Joe Boyle on the survey protocols‬

‭and ensuring accurate implementation of data collection methods across each transect.‬

‭Although weather disruptions and sea conditions restricted access to some planned control and‬

‭farm sites—particularly around the neighbouring island of Methana and the NE—we successfully‬

‭sampled across the four active inshore fish farms and four control sites on Poros. Crucially,‬

‭weather limitations prevented us from collecting data from control sites on more sheltered‬

‭coastlines. The dive team, was also limited to three dives per day due to safety and logistical‬

‭considerations, preventing further data collection. Divers collected data on leaf length, live and‬

‭dead meadow cover, and epiphyte abundance across 1 m² quadrats.‬

‭Following fieldwork, I processed over 5,000 photographs and 2,500+ individual data entries. Each‬

‭image was geotagged using GPS tracks and manually matched with corresponding data using‬

‭GeoSetter and Google Earth Pro. This task required significant manual effort, including filtering‬

‭duplicates, organising dive logs, and ensuring all data were correctly spatially referenced. I also‬

‭managed all financial tracking and receipts, and prepared interim reports and outreach materials‬

‭for stakeholders.‬

‭Between November 2024 and March 2025, I conducted spatial analyses using ArcGIS Pro to map‬

‭current and historic fish farm locations, supported by satellite imagery and archival research. Given‬

‭the lack of centralised historic farm data, I manually reviewed satellite images from Google Earth‬

‭Pro and Copernicus Hub to reconstruct farm operation timelines. With limited supervisor familiarity‬

‭with newer ArcGIS tools, I self-taught relevant spatial methods via tutorials and applied them to‬

‭estimate farm proximities and generate key figures.‬

‭In the final phase (March–May 2025), I performed statistical analyses in R, adapting techniques‬

‭suitable for bounded ecological data and hierarchical sampling designs. Some metrics, such as‬

‭dead meadow cover, were excluded based on methodological reliability identified in the literature.‬

‭Attempts to incorporate environmental covariates such as temperature and salinity were limited by‬

‭data availability for the region. The project concluded with the completion of a dissertation and first‬

‭full draft in early May 2025.‬
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‭8. Appendices‬
‭Appendix 1: SCUBA Dive Protocol Excerpt‬
‭‘Dive Operations‬‭ ‬

‭●‬ ‭Dive operations will follow those of the vessel operator, as discussed in daily briefing and‬
‭vessel orientation. ‬

‭●‬ ‭All diving and boat related activity to be completed within daylight hours. ‬

‭●‬ ‭No solo diving. All diving shall be conducted using the buddy system. Divers may be paired‬
‭or in buddy groups of not more than 3 divers. Buddy groupings will be assigned even if two‬
‭or more groups are operating in close proximity as part of a larger team.  ‬

‭●‬ ‭No diving in overhead environments. Overhead environments are defined as underwater‬
‭environments where there is a physical obstacle that prevents a direct ascent to the water's‬
‭surface. These environments include caves, wrecks, culverts, under ships, nets and other‬
‭structures.   ‬

‭●‬ ‭A dynamic safety assessment shall be made at each site to ensure the proposed dive site‬
‭is free of fishing nets or other in-water dangers. ‬

‭●‬ ‭Pre-dive equipment and safety checks will be conducted with their buddy following standard‬
‭diving protocols (e.g. Buoyancy, Weights, Releases, Air, and Final Check), and recorded‬
‭into dive log by surface support officer. ‬

‭●‬ ‭One diver in each buddy grouping must tow a Surface Marker Buoy (SMB) throughout the‬
‭dive as required by the survey protocol. Any static operations such as sediment cores,‬
‭vegetation sampling or measurement, will be similarly marked with a surface marker buoy.  ‬

‭●‬ ‭Diver entry and exit will follow the protocols of the vessel operator. Divers will receive a‬
‭briefing in these protocols before the dive. Divers will enter the water together in buddy‬
‭groupings, convene at the surface, before descending together to start the dive.  ‬

‭●‬ ‭Ascent and decent shall be made directly under the SMB. Divers may carry a delayed SMB‬
‭(dSMB) to deploy in case of loss of the towed SMB during a dive and deploy this to mark‬
‭their location to surface support and to ascend under.  ‬

‭●‬ ‭Divers are responsible for dismantling and securely stowing personal equipment.  ‬

‭●‬ ‭Divers are expected to carry suitable exposure suits for the diving conditions ‬

‭●‬ ‭Divers will be adequately weighted for diving in their equipment configuration to avoid loss‬
‭of buoyancy towards the end of the dive. ‬

‭●‬ ‭The maximum depth of all diving operations shall be 25 m or within the limits of each diver’s‬
‭qualifications and experience.  ‬
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‭●‬ ‭The standard maximum dive time shall be 60 minutes or less, as determined by the dive‬
‭profile, or air consumption. If dives are expected to be shallow (<10m) then dive time may‬
‭be extended to 90 minutes with prior agreement during the dive briefing. Maximum dive‬
‭time describes the time from descending to time to resurface. Dive tables will be available‬
‭on the boat in the event of computer failures (see last page). ‬

‭●‬ ‭Surface interval between dives shall be a minimum of 1 hour. ‬

‭●‬ ‭Within buddy groupings, divers shall dive within the limits described by their computer. If a‬
‭diver is not using a dive computer, they will use an approved set of diving tables (e.g. the‬
‭PADI Recreational Dive Planner) and an underwater timing device to plan and monitor their‬
‭dive. The most conservative dive profile of each buddy grouping shall be followed.   ‬

‭●‬ ‭If a diver’s computer fails, they should switch to their (i) back up computer or (ii) their timing‬
‭device and pre-determined dive table profiles to continue the dive. If these options are‬
‭unavailable the dive should be aborted, and the time noted for subsequent dives to be‬
‭possible. ‬

‭●‬ ‭Buddy groupings should complete their dive and return to the surface when (i) the first diver‬
‭in a buddy team nears the stipulated air reserve (divers should return to the surface with at‬
‭least 50 bar/500 psi in their tank), (ii) the maximum dive time is reached, or (iii) the survey‬
‭is complete. ‬

‭●‬ ‭Divers will conduct a safety stop at 5 metres for 3 minutes on all dives, and any additional‬
‭safety stops if required by their dive computer. ‬

‭●‬ ‭On reaching the surface divers should reconnect in their buddy grouping, inflate their BCD‬
‭to ensure positive buoyancy, signal to the vessel, and await pickup. ‬

‭●‬ ‭Emergency decompression. Should a diver accidentally dive longer that the no‬
‭decompression limits defined by their computer, they should follow the instructions of their‬
‭computer to decompress. If using dive tables for planning, the diver should follow the‬
‭standard emergency decompression guidelines e.g. <5 minutes over, - extend the safety‬
‭stop to 8 minutes (no diving for 6 hours), >5 minutes over - extend the safety stop to 15‬
‭minutes, air permitting (no diving for 24 hours).’‬
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‭Appendix 2: Poros P.O.A.Y (O.A.D.A) Fish Farm Expansion Plans‬

‭Appendix 3: Results of Analysis 3.1.1‬
‭Maximal Leaf Length Farming Level Comparisons- linear model with robust standard errors‬

‭Predictor‬ ‭Estimate‬ ‭Std. Error‬ ‭t value‬ ‭p-value‬ ‭Significance‬
‭(Intercept)‬ ‭20.5428‬ ‭1.968562‬ ‭10.435‬ ‭< 2.2e-16‬ ‭***‬
‭SiteType:‬
‭Previously‬
‭Farmed‬

‭-7.87206‬ ‭2.894077‬ ‭-2.72‬ ‭0.006714‬ ‭**‬

‭SiteType:‬
‭Control‬

‭25.71357‬ ‭3.42269‬ ‭7.513‬ ‭2.08E-13‬ ‭***‬

‭Depth‬ ‭0.069217‬ ‭0.179976‬ ‭0.385‬ ‭0.700675‬ ‭n.s.‬
‭Previously‬
‭Farmed ×‬
‭Depth‬

‭1.96409‬ ‭0.283611‬ ‭6.925‬ ‭1.11E-11‬ ‭***‬

‭Control ×‬
‭Depth‬

‭0.408362‬ ‭0.303576‬ ‭1.345‬ ‭0.179072‬ ‭n.s.‬

‭Model Summary‬
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‭Metric‬ ‭Value‬
‭Residual Standard Error‬ ‭16.68‬
‭Degrees of Freedom (Residuals)‬ ‭608‬
‭Multiple R-squared‬ ‭0.4233‬
‭Adjusted R-squared‬ ‭(not shown)‬

‭Number of Samples‬

‭Farming Level‬ ‭n‬
‭Control‬ ‭357‬
‭Previous farm‬ ‭78‬
‭Current farm‬ ‭179‬

‭Estimated Marginal Means‬

‭Site Type‬ ‭Estimated‬
‭marginal‬
‭mean‬
‭(cm)‬

‭SE‬ ‭df‬ ‭Lower CL‬ ‭Upper CL‬ ‭%‬
‭Decrease‬
‭vs Control‬

‭Currently‬
‭Farmed‬

‭21.2‬ ‭1.25‬ ‭608‬ ‭18.8‬ ‭23.7‬ ‭58.30%‬

‭Previously‬
‭Farmed‬

‭32.6‬ ‭1.93‬ ‭608‬ ‭28.8‬ ‭36.3‬ ‭36.00%‬

‭Control‬ ‭50.9‬ ‭0.89‬ ‭608‬ ‭49.2‬ ‭52.7‬ ‭0.00%‬

‭Tukey-adjusted pairwise comparisons of estimated marginal means‬

‭Contrast‬ ‭Estimate‬
‭(cm)‬

‭SE‬ ‭df‬ ‭t-ratio‬ ‭p-value‬

‭Currently‬
‭Farmed –‬
‭Previously‬
‭Farmed‬

‭–11.3‬ ‭2.3‬ ‭608‬ ‭–4.931‬ ‭<.0001‬

‭Currently‬
‭Farmed –‬
‭Control‬

‭–29.7‬ ‭1.53‬ ‭608‬ ‭–19.374‬ ‭<.0001‬

‭Previously‬
‭Farmed –‬
‭Control‬

‭–18.4‬ ‭2.12‬ ‭608‬ ‭–8.652‬ ‭<.0001‬

‭Maximal Leaf Length Sampling Site Comparisons- linear model with robust standard errors‬

‭Sampling‬
‭Site‬

‭Estimate‬ ‭Std. Error‬ ‭t value‬ ‭Pr(>|t|)‬ ‭Significance‬

‭(Intercept)|‬ ‭19.6242‬ ‭2.1424‬ ‭9.16‬ ‭< 2e-16‬ ‭***‬
‭b‬ ‭-15.3077‬ ‭5.06‬ ‭-3.025‬ ‭0.00259‬ ‭**‬
‭c‬ ‭-13.4936‬ ‭3.5064‬ ‭-3.848‬ ‭0.000132‬ ‭***‬
‭d‬ ‭-3.6666‬ ‭3.9815‬ ‭-0.921‬ ‭0.357459‬ ‭n.s.‬
‭e‬ ‭29.0832‬ ‭2.0372‬ ‭14.276‬ ‭< 2e-16‬ ‭***‬
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‭f‬ ‭22.7016‬ ‭1.9262‬ ‭11.786‬ ‭< 2e-16‬ ‭***‬
‭g‬ ‭33.1777‬ ‭3.5106‬ ‭9.451‬ ‭< 2e-16‬ ‭***‬
‭h‬ ‭6.1303‬ ‭2.3983‬ ‭2.556‬ ‭0.01083‬ ‭*‬
‭Depth‬ ‭0.5347‬ ‭0.1568‬ ‭3.41‬ ‭0.000693‬ ‭***‬

‭Model Summary‬

‭Metric‬ ‭Value‬
‭Residual Std. Error‬ ‭16.45‬
‭Degrees of Freedom‬ ‭605‬
‭Multiple R²‬ ‭0.4416‬
‭Adjusted R²‬ ‭0.4342‬
‭F-statistic‬ ‭59.81‬
‭Model DF‬ ‭8 and 605‬
‭Model p-value‬ ‭< 2.2e-16‬

‭Number of Samples‬

‭Sampling Site‬ ‭n‬
‭a‬ ‭120‬
‭b‬ ‭12‬
‭c‬ ‭27‬
‭d‬ ‭20‬
‭e‬ ‭143‬
‭f‬ ‭187‬
‭g‬ ‭27‬
‭h‬ ‭78‬

‭Estimated marginal means‬

‭Transect‬ ‭Emmean‬ ‭SE‬ ‭df‬ ‭Lower CL‬ ‭Upper CL‬
‭a‬ ‭24.85‬ ‭1.5‬ ‭605‬ ‭21.9‬ ‭27.8‬
‭b‬ ‭9.55‬ ‭4.83‬ ‭605‬ ‭0.05‬ ‭19‬
‭c‬ ‭11.36‬ ‭3.17‬ ‭605‬ ‭5.14‬ ‭17.6‬
‭d‬ ‭21.19‬ ‭3.69‬ ‭605‬ ‭13.95‬ ‭28.4‬
‭e‬ ‭53.94‬ ‭1.38‬ ‭605‬ ‭51.23‬ ‭56.6‬
‭f‬ ‭47.56‬ ‭1.21‬ ‭605‬ ‭45.19‬ ‭49.9‬
‭g‬ ‭58.03‬ ‭3.17‬ ‭605‬ ‭51.8‬ ‭64.3‬
‭h‬ ‭30.98‬ ‭1.87‬ ‭605‬ ‭27.31‬ ‭34.7‬

‭Tukey-adjusted pairwise comparisons of estimated marginal means‬

‭Contrast‬ ‭Estimate‬ ‭SE‬ ‭df‬ ‭t.ratio‬ ‭p-value‬
‭a - b‬ ‭15.31‬ ‭5.06‬ ‭605‬ ‭3.025‬ ‭0.0524‬
‭a - c‬ ‭13.49‬ ‭3.51‬ ‭605‬ ‭3.848‬ ‭0.0033‬
‭a - d‬ ‭3.67‬ ‭3.98‬ ‭605‬ ‭0.921‬ ‭0.984‬
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‭a - e‬ ‭–29.08‬ ‭2.04‬ ‭605‬ ‭–14.276‬ ‭<0.0001‬
‭a - f‬ ‭–22.70‬ ‭1.93‬ ‭605‬ ‭–11.786‬ ‭<0.0001‬
‭a - g‬ ‭–33.18‬ ‭3.51‬ ‭605‬ ‭–9.451‬ ‭<0.0001‬
‭a - h‬ ‭–6.13‬ ‭2.4‬ ‭605‬ ‭–2.556‬ ‭0.1744‬
‭b - c‬ ‭–1.81‬ ‭5.76‬ ‭605‬ ‭–0.315‬ ‭1‬
‭b - d‬ ‭–11.64‬ ‭6.11‬ ‭605‬ ‭–1.904‬ ‭0.5486‬
‭b - e‬ ‭–44.39‬ ‭5.03‬ ‭605‬ ‭–8.826‬ ‭<0.0001‬
‭b - f‬ ‭–38.01‬ ‭4.99‬ ‭605‬ ‭–7.610‬ ‭<0.0001‬
‭b - g‬ ‭–48.49‬ ‭5.81‬ ‭605‬ ‭–8.343‬ ‭<0.0001‬
‭b - h‬ ‭–21.44‬ ‭5.15‬ ‭605‬ ‭–4.160‬ ‭0.0009‬
‭c - d‬ ‭–9.83‬ ‭4.87‬ ‭605‬ ‭–2.019‬ ‭0.4698‬
‭c - e‬ ‭–42.58‬ ‭3.46‬ ‭605‬ ‭–12.322‬ ‭<0.0001‬
‭c - f‬ ‭–36.20‬ ‭3.39‬ ‭605‬ ‭–10.668‬ ‭<0.0001‬
‭c - g‬ ‭–46.67‬ ‭4.49‬ ‭605‬ ‭–10.397‬ ‭<0.0001‬
‭c - h‬ ‭–19.62‬ ‭3.67‬ ‭605‬ ‭–5.341‬ ‭<0.0001‬
‭d - e‬ ‭–32.75‬ ‭3.93‬ ‭605‬ ‭–8.325‬ ‭<0.0001‬
‭d - f‬ ‭–26.37‬ ‭3.87‬ ‭605‬ ‭–6.806‬ ‭<0.0001‬
‭d - g‬ ‭–36.84‬ ‭4.85‬ ‭605‬ ‭–7.590‬ ‭<0.0001‬
‭d - h‬ ‭–9.80‬ ‭4.14‬ ‭605‬ ‭–2.364‬ ‭0.261‬
‭e - f‬ ‭6.38‬ ‭1.83‬ ‭605‬ ‭3.49‬ ‭0.0121‬
‭e - g‬ ‭–4.09‬ ‭3.46‬ ‭605‬ ‭–1.184‬ ‭0.9362‬
‭e - h‬ ‭22.95‬ ‭2.32‬ ‭605‬ ‭9.877‬ ‭<0.0001‬
‭f - g‬ ‭–10.48‬ ‭3.39‬ ‭605‬ ‭–3.091‬ ‭0.0433‬
‭f - h‬ ‭16.57‬ ‭2.23‬ ‭605‬ ‭7.429‬ ‭<0.0001‬
‭g - h‬ ‭27.05‬ ‭3.69‬ ‭605‬ ‭7.327‬ ‭<0.0001‬

‭Appendix 4: Results of Analysis 3.1.2‬
‭Meadow Cover Farming Level Comparisons- beta regression‬

‭Predictor‬ ‭Estimat‬
‭e‬

‭Std.‬
‭Error‬

‭z value‬ ‭p‬‭value‬ ‭Significanc‬
‭e‬

‭(Intercept)‬ ‭0.211‬ ‭0.155‬ ‭1.364‬ ‭0.173‬ ‭n.s.‬
‭Current farm‬ ‭–0.897‬ ‭0.225‬ ‭–3.985‬ ‭<0.001‬ ‭***‬
‭Previous farm‬ ‭–1.189‬ ‭0.23‬ ‭–5.161‬ ‭<0.001‬ ‭***‬
‭Depth‬ ‭–0.002‬ ‭0.014‬ ‭–0.159‬ ‭0.873‬ ‭n.s.‬
‭Current farm × Depth‬ ‭–0.017‬ ‭0.021‬ ‭–0.806‬ ‭0.42‬ ‭n.s.‬
‭Previous farm × Depth‬ ‭0.017‬ ‭0.022‬ ‭0.752‬ ‭0.452‬ ‭n.s.‬

‭Model Summary‬

‭Statistic‬ ‭Value‬
‭Log-likelihood‬ ‭2493 (on 7 DF)‬
‭Pseudo R²‬ ‭0.188‬
‭Estimation method‬ ‭ML (BFGS + Fisher)‬
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‭Number of iterations‬ ‭24 (BFGS) + 1 (Fisher)‬

‭Number of Samples‬

‭Farming Level‬ ‭n‬
‭Control‬ ‭570‬
‭Previous Farm‬ ‭244‬
‭Current Farm‬ ‭359‬

‭Estimated marginal means‬

‭Site‬
‭Type‬

‭Estimat‬
‭ed‬
‭Meado‬
‭w‬
‭Cover‬
‭(Mean)‬

‭SE‬ ‭95% CI‬ ‭Site‬
‭Type‬

‭Estimat‬
‭ed‬
‭Meado‬
‭w‬
‭Cover‬
‭(Mean)‬

‭SE‬ ‭95% CI‬ ‭% Loss‬
‭Relativ‬
‭e to‬
‭Control‬

‭Control‬ ‭0.547‬ ‭0.0152‬ ‭[0.517,‬
‭0.577]‬

‭Control‬ ‭0.547‬ ‭0.0152‬ ‭[0.517,‬
‭0.577]‬

‭–‬

‭Current‬
‭farm‬

‭0.296‬ ‭0.0151‬ ‭[0.266,‬
‭0.325]‬

‭Current‬
‭farm‬

‭0.296‬ ‭0.0151‬ ‭[0.266,‬
‭0.325]‬

‭45.90%‬

‭Previou‬
‭s farm‬

‭0.302‬ ‭0.0184‬ ‭[0.266,‬
‭0.338]‬

‭Previou‬
‭s farm‬

‭0.302‬ ‭0.0184‬ ‭[0.266,‬
‭0.338]‬

‭44.80%‬

‭Tukey-adjusted pairwise comparisons‬

‭Contrast‬ ‭Estimate‬ ‭SE‬ ‭z-ratio‬ ‭p‬‭-value‬ ‭Significance‬
‭Control –‬
‭Current farm‬

‭0.252‬ ‭0.0217‬ ‭11.57‬ ‭< 0.0001‬ ‭***‬

‭Control –‬
‭Previous‬
‭farm‬

‭0.246‬ ‭0.0242‬ ‭10.16‬ ‭< 0.0001‬ ‭***‬

‭Current farm‬
‭– Previous‬
‭farm‬

‭–0.006‬ ‭0.023‬ ‭–0.27‬ ‭0.962‬ ‭n.s.‬

‭Meadow Cover Sampling Site Comparisons- beta regression‬

‭Sampling Site‬ ‭Estimat‬
‭e‬

‭Std.‬
‭Error‬

‭z value‬ ‭p‬‭-value‬ ‭Significanc‬
‭e‬

‭(Intercept)‬ ‭–0.333‬ ‭0.147‬ ‭–2.273‬ ‭0.023‬ ‭*‬
‭b‬ ‭–0.792‬ ‭0.192‬ ‭–4.123‬ ‭<0.001‬ ‭***‬
‭c‬ ‭–0.741‬ ‭0.173‬ ‭–4.281‬ ‭<0.001‬ ‭***‬
‭d‬ ‭–0.473‬ ‭0.214‬ ‭–2.214‬ ‭0.027‬ ‭*‬
‭e‬ ‭0.408‬ ‭0.146‬ ‭2.799‬ ‭0.005‬ ‭**‬
‭f‬ ‭0.795‬ ‭0.146‬ ‭5.451‬ ‭<0.001‬ ‭***‬
‭g‬ ‭0.918‬ ‭0.242‬ ‭3.801‬ ‭<0.001‬ ‭***‬
‭h‬ ‭–0.457‬ ‭0.142‬ ‭–3.220‬ ‭0.001‬ ‭**‬
‭Depth‬ ‭–0.010‬ ‭0.0089‬ ‭–1.140‬ ‭0.254‬ ‭n.s.‬
‭Reference level for Sampling Site  is Transect a.‬
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‭Model summary‬

‭Metric‬ ‭Value‬
‭Phi (precision)‬ ‭0.503 (SE = 0.017)‬
‭z value (phi)‬ ‭29.14‬
‭p-value (phi)‬ ‭< 0.001 (*** significant)‬
‭Log-likelihood‬ ‭2510 (on 10 DF)‬
‭Pseudo R²‬ ‭0.231‬
‭Iterations‬ ‭19 (BFGS) + 2 (Fisher scoring)‬

‭Number of Samples‬

‭Sampling Site‬ ‭n‬
‭a‬ ‭142‬

‭b‬ ‭65‬

‭c‬ ‭100‬

‭d‬ ‭52‬

‭e‬ ‭263‬

‭f‬ ‭259‬

‭g‬ ‭48‬

‭h‬ ‭244‬

‭Estimated marginal means‬

‭Sampling Site‬ ‭Estimated‬
‭marginal‬
‭mean‬

‭SE‬ ‭95% CI (Lower)‬ ‭95% CI‬
‭(Upper)‬

‭a‬ ‭0.394‬ ‭0.0275‬ ‭0.34‬ ‭0.448‬
‭b‬ ‭0.227‬ ‭0.0273‬ ‭0.174‬ ‭0.281‬
‭c‬ ‭0.237‬ ‭0.0237‬ ‭0.19‬ ‭0.283‬
‭d‬ ‭0.288‬ ‭0.0373‬ ‭0.215‬ ‭0.361‬
‭e‬ ‭0.494‬ ‭0.0225‬ ‭0.45‬ ‭0.538‬
‭f‬ ‭0.59‬ ‭0.0213‬ ‭0.548‬ ‭0.632‬
‭g‬ ‭0.619‬ ‭0.0499‬ ‭0.522‬ ‭0.717‬
‭h‬ ‭0.292‬ ‭0.0177‬ ‭0.257‬ ‭0.326‬

‭Tukey-adjusted pairwise comparison of estimated marginal means‬

‭Contrast‬ ‭Estimat‬
‭e‬

‭SE‬ ‭z-ratio‬ ‭p-value‬ ‭Significanc‬
‭e‬

‭a - b‬ ‭0.16643‬ ‭0.0385‬ ‭4.327‬ ‭0.0004‬ ‭***‬
‭a - c‬ ‭0.15732‬ ‭0.036‬ ‭4.374‬ ‭0.0003‬ ‭***‬
‭a - d‬ ‭0.10562‬ ‭0.046‬ ‭2.298‬ ‭0.2947‬ ‭n.s.‬
‭a - e‬ ‭-0.10041‬ ‭0.0354‬ ‭-2.833‬ ‭0.087‬
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‭a - f‬ ‭-0.19609‬ ‭0.035‬ ‭-5.605‬ ‭<0.0001‬ ‭***‬
‭a - g‬ ‭-0.22555‬ ‭0.0571‬ ‭-3.949‬ ‭0.002‬ ‭**‬
‭a - h‬ ‭0.10232‬ ‭0.0323‬ ‭3.164‬ ‭0.0334‬ ‭*‬
‭b - c‬ ‭-0.00911‬ ‭0.0353‬ ‭-0.258‬ ‭1‬ ‭n.s.‬
‭b - d‬ ‭-0.06081‬ ‭0.0458‬ ‭-1.327‬ ‭0.8888‬ ‭n.s.‬
‭b - e‬ ‭-0.26684‬ ‭0.0355‬ ‭-7.521‬ ‭<0.0001‬ ‭***‬
‭b - f‬ ‭-0.36252‬ ‭0.0351‬ ‭-10.331‬ ‭<0.0001‬ ‭***‬
‭b - g‬ ‭-0.39198‬ ‭0.0573‬ ‭-6.839‬ ‭<0.0001‬ ‭***‬
‭b - h‬ ‭-0.06411‬ ‭0.0317‬ ‭-2.025‬ ‭0.4648‬ ‭n.s.‬
‭c - d‬ ‭-0.0517‬ ‭0.0437‬ ‭-1.182‬ ‭0.9373‬ ‭n.s.‬
‭c - e‬ ‭-0.25773‬ ‭0.0328‬ ‭-7.869‬ ‭<0.0001‬ ‭***‬
‭c - f‬ ‭-0.35341‬ ‭0.0323‬ ‭-10.927‬ ‭<0.0001‬ ‭***‬
‭c - g‬ ‭-0.38287‬ ‭0.0557‬ ‭-6.879‬ ‭<0.0001‬ ‭***‬
‭c - h‬ ‭-0.055‬ ‭0.0287‬ ‭-1.919‬ ‭0.5374‬ ‭n.s.‬
‭d - e‬ ‭-0.20602‬ ‭0.0434‬ ‭-4.744‬ ‭0.0001‬ ‭***‬
‭d - f‬ ‭-0.3017‬ ‭0.0432‬ ‭-6.989‬ ‭<0.0001‬ ‭***‬
‭d - g‬ ‭-0.33117‬ ‭0.0625‬ ‭-5.301‬ ‭<0.0001‬ ‭***‬
‭d - h‬ ‭-0.00329‬ ‭0.0408‬ ‭-0.081‬ ‭1‬ ‭n.s.‬
‭e - f‬ ‭-0.09568‬ ‭0.031‬ ‭-3.091‬ ‭0.0419‬ ‭.‬
‭e - g‬ ‭-0.12514‬ ‭0.0547‬ ‭-2.288‬ ‭0.3‬ ‭n.s.‬
‭e - h‬ ‭0.20273‬ ‭0.0287‬ ‭7.065‬ ‭<0.0001‬ ‭***‬
‭f - g‬ ‭-0.02947‬ ‭0.0541‬ ‭-0.545‬ ‭0.9994‬ ‭n.s.‬
‭f - h‬ ‭0.29841‬ ‭0.0282‬ ‭10.577‬ ‭<0.0001‬ ‭***‬
‭g - h‬ ‭0.32788‬ ‭0.0534‬ ‭6.145‬ ‭<0.0001‬ ‭***‬

‭Appendix 5: Results of Analysis 3.1.3‬
‭Epiphyte Cover Farming Level Comparisons- beta regression‬

‭Term‬ ‭Estimate‬ ‭Std. Error‬ ‭z value‬ ‭Pr(>|z|)‬ ‭Significance‬
‭(Intercept)‬ ‭-0.27586‬ ‭0.15091‬ ‭-1.828‬ ‭0.0676‬ ‭n.s.‬
‭SiteTypePre‬
‭viously‬
‭Farmed‬

‭0.52673‬ ‭0.2497‬ ‭2.109‬ ‭0.0349‬ ‭*‬

‭SiteTypeCon‬
‭trol‬

‭-0.44648‬ ‭0.18925‬ ‭-2.359‬ ‭0.0183‬ ‭*‬

‭Depth‬ ‭-0.0683‬ ‭0.015‬ ‭-4.553‬ ‭0.000005‬ ‭***‬
‭SiteTypePre‬
‭viously‬
‭Farmed:Dept‬
‭h‬

‭0.21403‬ ‭0.02592‬ ‭8.256‬ ‭< 2e-16‬ ‭***‬

‭SiteTypeCon‬
‭trol:Depth‬

‭0.09688‬ ‭0.01807‬ ‭5.361‬ ‭8.29E-08‬ ‭***‬

‭(phi)‬ ‭4.7617‬ ‭0.2549‬ ‭18.68‬ ‭< 2e-16‬ ‭***‬

‭Predictor‬ ‭Estimate‬ ‭Std. Error‬ ‭t value‬ ‭p-value‬ ‭Significance‬
‭(Intercept)‬ ‭–0.72233‬ ‭0.11437‬ ‭–6.316‬ ‭2.69E-10‬ ‭***‬
‭SiteType:‬
‭Current farm‬

‭0.44648‬ ‭0.18925‬ ‭2.359‬ ‭0.01831‬ ‭*‬
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‭SiteType:‬
‭Previous‬
‭farm‬

‭0.97321‬ ‭0.22951‬ ‭4.24‬ ‭2.23E-05‬ ‭***‬

‭Depth‬ ‭0.02858‬ ‭0.01004‬ ‭2.845‬ ‭0.00444‬ ‭**‬
‭Current farm‬
‭× Depth‬

‭–0.09688‬ ‭0.01807‬ ‭–5.361‬ ‭8.29E-08‬ ‭***‬

‭Previous‬
‭farm × Depth‬

‭0.11716‬ ‭0.02328‬ ‭5.032‬ ‭4.85E-07‬ ‭***‬

‭Number of Samples‬

‭Farming Level‬ ‭n‬
‭Control‬ ‭365‬
‭Previous farm‬ ‭77‬
‭Current farm‬ ‭171‬

‭Estimated marginal means‬

‭Site Type‬ ‭Emmean‬ ‭SE‬ ‭Lower CL‬ ‭Upper CL‬ ‭%‬
‭Difference‬
‭vs Previous‬
‭Farm‬

‭Control‬ ‭0.392‬ ‭0.0106‬ ‭0.371‬ ‭0.413‬ ‭–53.6%‬

‭Current farm‬ ‭0.278‬ ‭0.0138‬ ‭0.251‬ ‭0.305‬ ‭–67.1%‬

‭Previous‬
‭farm‬

‭0.845‬ ‭0.0149‬ ‭0.816‬ ‭0.874‬ ‭Reference‬

‭Tukey-adjusted pairwise comparison of means‬

‭Contrast‬ ‭Estimate‬ ‭SE‬ ‭z-ratio‬ ‭p-value‬
‭Control –‬
‭Current farm‬

‭0.114‬ ‭0.0172‬ ‭6.61‬ ‭<.0001‬

‭Control –‬
‭Previous farm‬

‭–0.453‬ ‭0.0185‬ ‭–24.553‬ ‭<.0001‬

‭Current farm –‬
‭Previous farm‬

‭–0.567‬ ‭0.0207‬ ‭–27.443‬ ‭<.0001‬

‭Epiphyte Cover Sampling Site Comparisons- beta regression‬

‭Term‬ ‭Estimate‬ ‭Std.‬
‭Error‬

‭z value‬ ‭Pr(>|z|)‬ ‭Significance‬

‭(Intercept)‬ ‭-1.25786‬ ‭0.10613‬
‭2‬

‭-11.852‬ ‭< 2e-16‬ ‭***‬

‭C‬ ‭0.36215‬
‭9‬

‭0.20123‬
‭3‬

‭1.8‬ ‭0.071908‬ ‭n.s.‬

‭E‬ ‭0.491148‬ ‭0.10633‬
‭5‬

‭4.619‬ ‭3.86E-06‬ ‭***‬

‭F‬ ‭0.92837‬
‭5‬

‭0.10239‬
‭1‬

‭9.067‬ ‭< 2e-16‬ ‭***‬

‭G‬ ‭0.57237‬ ‭0.16780‬
‭1‬

‭3.411‬ ‭0.000647‬ ‭***‬
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‭H‬ ‭2.73180‬
‭3‬

‭0.13947‬
‭1‬

‭19.587‬ ‭< 2e-16‬ ‭***‬

‭Depth‬ ‭0.01077‬
‭4‬

‭0.00632‬
‭1‬

‭1.705‬ ‭0.088255‬ ‭n.s.‬

‭(phi)‬ ‭4.4672‬ ‭0.2347‬ ‭19.03‬ ‭< 2e-16‬ ‭***‬

‭Number of samples‬

‭Sampling Site‬ ‭n‬
‭a‬ ‭122‬
‭c‬ ‭23‬
‭e‬ ‭170‬
‭f‬ ‭201‬
‭g‬ ‭36‬
‭h‬ ‭80‬

‭Estimated marginal means‬

‭Sampling Site Identity‬ ‭Estimated‬
‭marginal‬
‭mean‬

‭SE‬ ‭Lower CI‬ ‭Upper CI‬

‭a‬ ‭0.242‬ ‭0.0153‬ ‭0.212‬ ‭0.272‬
‭c‬ ‭0.315‬ ‭0.0397‬ ‭0.237‬ ‭0.392‬
‭e‬ ‭0.343‬ ‭0.0152‬ ‭0.313‬ ‭0.373‬
‭f‬ ‭0.447‬ ‭0.0148‬ ‭0.418‬ ‭0.476‬
‭g‬ ‭0.362‬ ‭0.0336‬ ‭0.296‬ ‭0.427‬
‭h‬ ‭0.831‬ ‭0.0153‬ ‭0.801‬ ‭0.861‬

‭Tukey-adjusted pairwise comparison of estimated marginal means‬

‭Contrast‬ ‭Estimate‬ ‭SE‬ ‭df‬ ‭z.ratio‬ ‭p.value‬ ‭Significanc‬
‭e‬

‭a - c‬ ‭-0.0724‬ ‭0.0424‬ ‭Inf‬ ‭-1.709‬ ‭0.5256‬ ‭n.s.‬
‭a - e‬ ‭-0.1009‬ ‭0.0214‬ ‭Inf‬ ‭-4.721‬ ‭<.0001‬ ‭***‬
‭a - f‬ ‭-0.2049‬ ‭0.0212‬ ‭Inf‬ ‭-9.657‬ ‭<.0001‬ ‭***‬
‭a - g‬ ‭-0.1194‬ ‭0.0369‬ ‭Inf‬ ‭-3.234‬ ‭0.0155‬ ‭*‬
‭a - h‬ ‭-0.5886‬ ‭0.022‬ ‭Inf‬ ‭-26.724‬ ‭<.0001‬ ‭***‬
‭c - e‬ ‭-0.0285‬ ‭0.0426‬ ‭Inf‬ ‭-0.669‬ ‭0.9854‬ ‭n.s.‬
‭c - f‬ ‭-0.1325‬ ‭0.0424‬ ‭Inf‬ ‭-3.127‬ ‭0.0218‬ ‭*‬
‭c - g‬ ‭-0.047‬ ‭0.0524‬ ‭Inf‬ ‭-0.897‬ ‭0.9474‬ ‭n.s.‬
‭c - h‬ ‭-0.5161‬ ‭0.0425‬ ‭Inf‬ ‭-12.132‬ ‭<.0001‬ ‭***‬
‭e - f‬ ‭-0.104‬ ‭0.0211‬ ‭Inf‬ ‭-4.929‬ ‭<.0001‬ ‭***‬
‭e - g‬ ‭-0.0185‬ ‭0.0366‬ ‭Inf‬ ‭-0.507‬ ‭0.9959‬ ‭n.s.‬
‭e - h‬ ‭-0.4877‬ ‭0.022‬ ‭Inf‬ ‭-22.195‬ ‭<.0001‬ ‭***‬
‭f - g‬ ‭0.0855‬ ‭0.0367‬ ‭Inf‬ ‭2.331‬ ‭0.1816‬ ‭n.s.‬
‭f - h‬ ‭-0.3837‬ ‭0.0214‬ ‭Inf‬ ‭-17.921‬ ‭<.0001‬ ‭***‬
‭g - h‬ ‭-0.4692‬ ‭0.0374‬ ‭Inf‬ ‭-12.536‬ ‭<.0001‬ ‭***‬
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‭Appendix 6: Results of Analysis 3.2.1‬
‭Maximal leaf length with distance from nearest fish farm- linear model with robust standard‬
‭errors‬

‭Predictor‬ ‭Estimate‬ ‭Std. Error‬ ‭t value‬ ‭p-value‬ ‭Significance‬
‭(Intercept)‬ ‭24.289‬ ‭2.642‬ ‭9.192‬ ‭< 2e-16‬ ‭***‬
‭300–450 m‬ ‭–4.263‬ ‭2.85‬ ‭–1.496‬ ‭0.135‬ ‭n.s.‬
‭450–600 m‬ ‭–2.532‬ ‭3.004‬ ‭–0.843‬ ‭0.4‬ ‭n.s.‬
‭600–750 m‬ ‭3.73‬ ‭3.035‬ ‭1.229‬ ‭0.22‬ ‭n.s.‬
‭750–900 m‬ ‭11.252‬ ‭3.724‬ ‭3.022‬ ‭0.00263‬ ‭**‬
‭Control‬
‭(6000+ m)‬

‭27.34‬ ‭2.668‬ ‭10.248‬ ‭< 2e-16‬ ‭***‬

‭Depth‬ ‭–0.104‬ ‭0.154‬ ‭–0.676‬ ‭0.499‬ ‭n.s.‬

‭Model summary‬

‭Metric‬ ‭Value‬
‭Residual Standard Error‬ ‭18‬
‭Degrees of Freedom (Residuals)‬ ‭547‬
‭Multiple R-squared‬ ‭0.3261‬
‭Adjusted R-squared‬ ‭0.3187‬
‭F-statistic‬ ‭44.11 (on 6 and 547 DF)‬
‭p-value (overall model)‬ ‭< 2.2e-16‬

‭Number of Samples‬

‭Distance (m)‬ ‭n‬
‭150-300‬ ‭85‬
‭300-450‬ ‭45‬
‭450-600‬ ‭34‬
‭600-750‬ ‭18‬
‭750-900‬ ‭14‬
‭Control‬ ‭336‬

‭Estimated marginal means‬

‭Distance‬
‭to Farm‬
‭(m)‬

‭Emmean‬ ‭SE‬ ‭df‬ ‭Lower CL‬ ‭Upper CL‬ ‭% Loss vs‬
‭Control‬

‭150–300‬ ‭23.1‬ ‭3.56‬ ‭547‬ ‭16.1‬ ‭30.1‬ ‭54.20%‬
‭300–450‬ ‭18.8‬ ‭2.72‬ ‭547‬ ‭13.5‬ ‭24.2‬ ‭62.70%‬
‭450–600‬ ‭20.6‬ ‭2.74‬ ‭547‬ ‭15.2‬ ‭26‬ ‭59.10%‬
‭600–750‬ ‭26.8‬ ‭4.27‬ ‭547‬ ‭18.4‬ ‭35.2‬ ‭46.80%‬
‭750–900‬ ‭34.4‬ ‭4.83‬ ‭547‬ ‭24.9‬ ‭43.8‬ ‭31.70%‬
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‭Control‬
‭(6000+)‬

‭50.4‬ ‭0.89‬ ‭547‬ ‭48.7‬ ‭52.2‬ ‭0.00%‬

‭Tukey-adjusted pairwise comparison of estimated marginal means‬

‭Contrast‬ ‭Estimate‬ ‭SE‬ ‭df‬ ‭t-ratio‬ ‭p-value‬
‭(150–300) –‬
‭(300–450)‬

‭4.26‬ ‭4.51‬ ‭547‬ ‭0.946‬ ‭0.9343‬

‭(150–300) –‬
‭(450–600)‬

‭2.53‬ ‭4.5‬ ‭547‬ ‭0.563‬ ‭0.9933‬

‭(150–300) –‬
‭(600–750)‬

‭–3.73‬ ‭5.52‬ ‭547‬ ‭–0.676‬ ‭0.9845‬

‭(150–300) –‬
‭(750–900)‬

‭–11.25‬ ‭5.97‬ ‭547‬ ‭–1.886‬ ‭0.4119‬

‭(150–300) –‬
‭Control‬
‭(6000+)‬

‭–27.34‬ ‭3.68‬ ‭547‬ ‭–7.435‬ ‭<0.0001‬

‭(300–450) –‬
‭(450–600)‬

‭–1.73‬ ‭3.86‬ ‭547‬ ‭–0.448‬ ‭0.9977‬

‭(300–450) –‬
‭(600–750)‬

‭–7.99‬ ‭5.09‬ ‭547‬ ‭–1.570‬ ‭0.6185‬

‭(300–450) –‬
‭(750–900)‬

‭–15.52‬ ‭5.56‬ ‭547‬ ‭–2.793‬ ‭0.0601‬

‭(300–450) –‬
‭Control‬
‭(6000+)‬

‭–31.60‬ ‭2.86‬ ‭547‬ ‭–11.047‬ ‭<0.0001‬

‭(450–600) –‬
‭(600–750)‬

‭–6.26‬ ‭5.08‬ ‭547‬ ‭–1.232‬ ‭0.8209‬

‭(450–600) –‬
‭(750–900)‬

‭–13.78‬ ‭5.55‬ ‭547‬ ‭–2.482‬ ‭0.1311‬

‭(450–600) –‬
‭Control‬
‭(6000+)‬

‭–29.87‬ ‭2.89‬ ‭547‬ ‭–10.354‬ ‭<0.0001‬

‭(600–750) –‬
‭(750–900)‬

‭–7.52‬ ‭6.41‬ ‭547‬ ‭–1.173‬ ‭0.8498‬

‭(600–750) –‬
‭Control‬
‭(6000+)‬

‭–23.61‬ ‭4.37‬ ‭547‬ ‭–5.402‬ ‭<0.0001‬

‭(750–900) –‬
‭Control‬
‭(6000+)‬

‭–16.09‬ ‭4.91‬ ‭547‬ ‭–3.276‬ ‭0.0142‬

‭Appendix 7: Results of Analysis 3.2.2‬
‭Meadow cover with distance from nearest fish farm- beta regression‬

‭Predictor‬ ‭Estimate‬ ‭Std. Error‬ ‭z value‬ ‭p‬‭-value‬ ‭Significanc‬
‭e‬

‭(Intercept)‬ ‭–0.483‬ ‭0.157‬ ‭–3.076‬ ‭0.0021‬ ‭**‬
‭300–450 m‬ ‭–0.682‬ ‭0.166‬ ‭–4.112‬ ‭<0.0001‬ ‭***‬
‭450–600 m‬ ‭–0.260‬ ‭0.22‬ ‭–1.182‬ ‭0.2373‬
‭600–750 m‬ ‭–0.225‬ ‭0.262‬ ‭–0.858‬ ‭0.3908‬
‭750–900 m‬ ‭–0.105‬ ‭0.315‬ ‭–0.335‬ ‭0.7376‬
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‭Control‬
‭(6000+ m,‬
‭ref)‬

‭0.566‬ ‭0.133‬ ‭4.255‬ ‭<0.0001‬ ‭***‬

‭Depth‬ ‭0.0149‬ ‭0.012‬ ‭1.234‬ ‭0.2171‬
‭Reference group: 0–300 m (baseline category for distance).‬

‭Model summary‬

‭Statistic‬ ‭Value‬
‭Phi (dispersion)‬ ‭0.467 (SE = 0.0179)‬
‭Log-likelihood‬ ‭1696 (on 8 DF)‬
‭Pseudo R²‬ ‭0.161‬
‭Residuals (Quantile)‬ ‭Min: –1.578, 1Q: –0.808, Median: 0.007,‬

‭3Q: 1.085, Max: 1.820‬
‭Iterations‬ ‭18 (BFGS) + 2 (Fisher scoring)‬

‭Number of samples‬

‭Distance (m)‬ ‭n‬
‭150-300‬ ‭138‬
‭300-450‬ ‭113‬
‭450-600‬ ‭50‬
‭600-750‬ ‭32‬
‭750-900‬ ‭21‬
‭Control‬ ‭457‬

‭Estimated marginal means‬

‭Distance‬
‭Category‬

‭Estimated‬
‭marginal‬
‭means‬

‭SE‬ ‭95% CI‬
‭(Lower)‬

‭95% CI‬
‭(Upper)‬

‭% Loss‬
‭Relative to‬
‭Control‬

‭150–300 m‬ ‭0.414‬ ‭0.0281‬ ‭0.359‬ ‭0.469‬ ‭25.30%‬
‭300–450 m‬ ‭0.263‬ ‭0.0235‬ ‭0.217‬ ‭0.309‬ ‭52.50%‬
‭450–600 m‬ ‭0.352‬ ‭0.0429‬ ‭0.268‬ ‭0.436‬ ‭36.40%‬
‭600–750 m‬ ‭0.36‬ ‭0.0545‬ ‭0.254‬ ‭0.467‬ ‭35.00%‬
‭750–900 m‬ ‭0.388‬ ‭0.0696‬ ‭0.252‬ ‭0.525‬ ‭30.00%‬
‭Control‬
‭(6000+ m)‬

‭0.554‬ ‭0.0159‬ ‭0.523‬ ‭0.585‬ ‭–‬

‭Tukey-adjusted pairwise comparison of estimated marginal mean‬

‭Contrast‬ ‭Estimate‬ ‭SE‬ ‭z-ratio‬ ‭p-value‬
‭(150–300) –‬
‭(300–450)‬

‭0.15066‬ ‭0.0362‬ ‭4.161‬ ‭0.0005‬

‭(150–300) –‬
‭(450–600)‬

‭0.06125‬ ‭0.051‬ ‭1.201‬ ‭0.8367‬

‭(150–300) –‬
‭(600–750)‬

‭0.05328‬ ‭0.061‬ ‭0.873‬ ‭0.9529‬
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‭(150–300) –‬
‭(750–900)‬

‭0.02531‬ ‭0.0749‬ ‭0.338‬ ‭0.9994‬

‭(150–300) –‬
‭Control (6000+)‬

‭-0.1405‬ ‭0.0324‬ ‭-4.333‬ ‭0.0002‬

‭(300–450) –‬
‭(450–600)‬

‭-0.08941‬ ‭0.0484‬ ‭-1.846‬ ‭0.4361‬

‭(300–450) –‬
‭(600–750)‬

‭-0.09738‬ ‭0.0589‬ ‭-1.654‬ ‭0.5626‬

‭(300–450) –‬
‭(750–900)‬

‭-0.12536‬ ‭0.0732‬ ‭-1.711‬ ‭0.5241‬

‭(300–450) –‬
‭Control (6000+)‬

‭-0.29116‬ ‭0.0288‬ ‭-10.126‬ ‭<0.0001‬

‭(450–600) –‬
‭(600–750)‬

‭-0.00797‬ ‭0.069‬ ‭-0.116‬ ‭1‬

‭(450–600) –‬
‭(750–900)‬

‭-0.03594‬ ‭0.0816‬ ‭-0.441‬ ‭0.9979‬

‭(450–600) –‬
‭Control (6000+)‬

‭-0.20175‬ ‭0.0459‬ ‭-4.392‬ ‭0.0002‬

‭(600–750) –‬
‭(750–900)‬

‭-0.02797‬ ‭0.0882‬ ‭-0.317‬ ‭0.9996‬

‭(600–750) –‬
‭Control (6000+)‬

‭-0.19378‬ ‭0.057‬ ‭-3.4‬ ‭0.0088‬

‭(750–900) –‬
‭Control (6000+)‬

‭-0.1658‬ ‭0.0715‬ ‭-2.318‬ ‭0.1866‬

‭Appendix 8: Results of Analysis 3.2.3‬
‭Epiphyte Cover with distance from nearest fish farm- beta regression‬

‭Term‬ ‭Estimate‬ ‭Std. Error‬ ‭z value‬ ‭Pr(>|z|)‬ ‭Significance‬
‭(Intercept)‬ ‭-1.11118‬ ‭0.17617‬ ‭-6.307‬ ‭2.84E-10‬ ‭***‬
‭300-450‬ ‭-0.1983‬ ‭0.20583‬ ‭-0.963‬ ‭0.33533‬ ‭n.s.‬
‭450-600‬ ‭0.55115‬ ‭0.21559‬ ‭2.556‬ ‭0.01057‬ ‭*‬
‭600-750‬ ‭0.23034‬ ‭0.23835‬ ‭0.966‬ ‭0.33384‬ ‭n.s.‬
‭750-900‬ ‭0.31271‬ ‭0.2553‬ ‭1.225‬ ‭0.22063‬ ‭n.s.‬
‭Control‬
‭(6000m+)‬

‭0.51008‬ ‭0.16265‬ ‭3.136‬ ‭0.00171‬ ‭**‬

‭Depth‬ ‭0.0121‬ ‭0.00984‬ ‭1.229‬ ‭0.21898‬ ‭n.s.‬

‭Number of samples‬

‭Distance (m)‬ ‭n‬
‭150-300‬ ‭25‬
‭300-450‬ ‭38‬
‭450-600‬ ‭25‬
‭600-750‬ ‭18‬
‭750-900‬ ‭14‬
‭Control‬ ‭334‬
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‭Estimated marginal means‬

‭Distance‬ ‭emmean‬ ‭SE‬ ‭asymp.LCL‬ ‭asymp.UCL‬ ‭% Change‬
‭vs Control‬

‭150-300‬ ‭0.27‬ ‭0.0311‬ ‭0.209‬ ‭0.33‬ ‭-29.13‬
‭300-450‬ ‭0.232‬ ‭0.0235‬ ‭0.186‬ ‭0.278‬ ‭-39.11‬
‭450-600‬ ‭0.39‬ ‭0.0351‬ ‭0.322‬ ‭0.459‬ ‭2.36‬
‭600-750‬ ‭0.317‬ ‭0.0391‬ ‭0.241‬ ‭0.394‬ ‭-16.8‬
‭750-900‬ ‭0.335‬ ‭0.0449‬ ‭0.247‬ ‭0.423‬ ‭-12.07‬
‭Control‬
‭(6000m+)‬

‭0.381‬ ‭0.00961‬ ‭0.362‬ ‭0.399‬ ‭0‬

‭Tukey-adjusted pairwise comparison of estimated marginal means‬

‭Contrast‬ ‭Estimate‬ ‭SE‬ ‭df‬ ‭z.ratio‬ ‭p.value‬ ‭Significanc‬
‭e‬

‭(150-300)‬
‭-‬
‭(300-450)‬

‭0.03722‬ ‭0.039‬ ‭Inf‬ ‭0.954‬ ‭0.9321‬ ‭n.s.‬

‭(150-300)‬
‭-‬
‭(450-600)‬

‭-0.12082‬ ‭0.0468‬ ‭Inf‬ ‭-2.582‬ ‭0.1016‬ ‭n.s.‬

‭(150-300)‬
‭-‬
‭(600-750)‬

‭-0.04767‬ ‭0.0496‬ ‭Inf‬ ‭-0.96‬ ‭0.9304‬ ‭n.s.‬

‭(150-300)‬
‭-‬
‭(750-900)‬

‭-0.06577‬ ‭0.0545‬ ‭Inf‬ ‭-1.207‬ ‭0.8336‬ ‭n.s.‬

‭(150-300)‬
‭- (Control)‬

‭-0.11109‬ ‭0.0324‬ ‭Inf‬ ‭-3.424‬ ‭0.0081‬ ‭**‬

‭(300-450)‬
‭-‬
‭(450-600)‬

‭-0.15804‬ ‭0.0422‬ ‭Inf‬ ‭-3.743‬ ‭0.0025‬ ‭**‬

‭(300-450)‬
‭-‬
‭(600-750)‬

‭-0.08489‬ ‭0.0458‬ ‭Inf‬ ‭-1.856‬ ‭0.43‬ ‭n.s.‬

‭(300-450)‬
‭-‬
‭(750-900)‬

‭-0.10299‬ ‭0.0507‬ ‭Inf‬ ‭-2.03‬ ‭0.3252‬ ‭n.s.‬

‭(300-450)‬
‭- (Control)‬

‭-0.14831‬ ‭0.0253‬ ‭Inf‬ ‭-5.872‬ ‭<.0001‬ ‭***‬

‭(450-600)‬
‭-‬
‭(600-750)‬

‭0.07314‬ ‭0.0525‬ ‭Inf‬ ‭1.394‬ ‭0.7307‬ ‭n.s.‬

‭(450-600)‬
‭-‬
‭(750-900)‬

‭0.05504‬ ‭0.057‬ ‭Inf‬ ‭0.966‬ ‭0.9287‬ ‭n.s.‬

‭(450-600)‬
‭- (Control)‬

‭0.00973‬ ‭0.0364‬ ‭Inf‬ ‭0.268‬ ‭0.9998‬ ‭n.s.‬

‭(600-750)‬
‭-‬
‭(750-900)‬

‭-0.0181‬ ‭0.0594‬ ‭Inf‬ ‭-0.305‬ ‭0.9997‬ ‭n.s.‬
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‭(600-750)‬
‭- (Control)‬

‭-0.06342‬ ‭0.0402‬ ‭Inf‬ ‭-1.576‬ ‭0.6142‬ ‭n.s.‬

‭(750-900)‬
‭- (Control)‬

‭-0.04531‬ ‭0.0459‬ ‭Inf‬ ‭-0.987‬ ‭0.9224‬ ‭n.s.‬

‭Appendix 9: Results of Analysis 3.3.1‬
‭Maximal leaf length by cumulative duration of fish farming activity- linear model with robust‬
‭standard errors‬

‭Cumulative Duration‬ ‭Estimate‬ ‭Std.‬
‭Error‬

‭t value‬ ‭Pr(>|t|)‬ ‭Significance‬

‭(Intercept)‬ ‭20.5333‬ ‭2.07183‬ ‭9.9107‬ ‭< 2.2e-16‬ ‭***‬
‭20-30‬ ‭1.38189‬ ‭1.7116‬ ‭0.8074‬ ‭0.4198‬ ‭n.s.‬
‭30-40‬ ‭-7.5731‬ ‭2.13219‬ ‭-3.5518‬ ‭0.0004‬ ‭***‬
‭40-50‬ ‭-14.0536‬ ‭3.18695‬ ‭-4.4097‬ ‭1.24E-05‬ ‭***‬
‭50-60‬ ‭-19.4992‬ ‭1.4704‬ ‭-13.2611‬ ‭< 2.2e-16‬ ‭***‬
‭60-70‬ ‭-17.0017‬ ‭2.11789‬ ‭-8.0277‬ ‭5.74E-15‬ ‭***‬
‭Control‬ ‭23.28817‬ ‭1.58709‬ ‭14.6735‬ ‭< 2.2e-16‬ ‭***‬
‭Depth‬ ‭0.72696‬ ‭0.17126‬ ‭4.2447‬ ‭2.56E-05‬ ‭***‬

‭Model summary‬

‭Metric‬ ‭Value‬
‭Residual standard error‬ ‭16.76‬
‭Degrees of freedom‬ ‭568‬
‭Multiple R-squared‬ ‭0.4087‬
‭Adjusted R-squared‬ ‭0.4015‬
‭F-statistic‬ ‭56.1 on 7 and 568 DF‬
‭p-value‬ ‭< 2.2e-16‬

‭Number of Samples‬

‭Cumulative Duration (years)‬ ‭n‬
‭10-20‬ ‭83‬
‭20-30‬ ‭101‬
‭30-40‬ ‭21‬
‭40-50‬ ‭16‬
‭50-60‬ ‭16‬
‭60-70‬ ‭12‬
‭Control‬ ‭337‬

‭Estimated marginal means‬

‭Cumulative Duration‬ ‭emmea‬
‭n‬

‭SE‬ ‭df‬ ‭lower.CL‬ ‭upper.C‬
‭L‬

‭%‬
‭Chang‬
‭e vs‬
‭Control‬

‭10-20‬ ‭27.36‬ ‭1.85‬ ‭568‬ ‭23.741‬ ‭31‬ ‭-45.98‬
‭20-30‬ ‭28.75‬ ‭1.69‬ ‭568‬ ‭25.436‬ ‭32.1‬ ‭-43.24‬
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‭30-40‬ ‭19.79‬ ‭3.67‬ ‭568‬ ‭12.581‬ ‭27‬ ‭-60.93‬
‭40-50‬ ‭13.31‬ ‭4.2‬ ‭568‬ ‭5.066‬ ‭21.6‬ ‭-73.72‬
‭50-60‬ ‭7.87‬ ‭6.86‬ ‭568‬ ‭-5.612‬ ‭21.3‬ ‭-84.46‬
‭60-70‬ ‭10.36‬ ‭4.93‬ ‭568‬ ‭0.675‬ ‭20.1‬ ‭-79.54‬
‭Control‬ ‭50.65‬ ‭0.915‬ ‭568‬ ‭48.857‬ ‭52.4‬ ‭0‬

‭Tukey-adjusted pairwise comparisons of estimated marginal means‬

‭Contrast‬ ‭Estimat‬
‭e‬

‭SE‬ ‭df‬ ‭t.ratio‬ ‭p.valu‬
‭e‬

‭Significanc‬
‭e‬

‭(10-20) - (20-30)‬ ‭-1.38‬ ‭2.51‬ ‭568‬ ‭-0.55‬ ‭0.998‬ ‭n.s.‬

‭(10-20) - (30-40)‬ ‭7.57‬ ‭4.1‬ ‭568‬ ‭1.848‬ ‭0.5158‬ ‭n.s.‬

‭(10-20) - (40-50)‬ ‭14.05‬ ‭4.59‬ ‭568‬ ‭3.059‬ ‭0.0374‬ ‭*‬

‭(10-20) - (50-60)‬ ‭19.5‬ ‭7.09‬ ‭568‬ ‭2.748‬ ‭0.0885‬ ‭n.s.‬

‭(10-20) - (60-70)‬ ‭17‬ ‭5.29‬ ‭568‬ ‭3.212‬ ‭0.0234‬ ‭*‬

‭(10-20) - Control‬ ‭-23.29‬ ‭2.06‬ ‭568‬ ‭-11.33‬ ‭0.0001‬ ‭***‬

‭(20-30) - (30-40)‬ ‭8.96‬ ‭4.06‬ ‭568‬ ‭2.206‬ ‭0.2939‬ ‭n.s.‬

‭(20-30) - (40-50)‬ ‭15.44‬ ‭4.51‬ ‭568‬ ‭3.423‬ ‭0.0117‬ ‭*‬

‭(20-30) - (50-60)‬ ‭20.88‬ ‭7.08‬ ‭568‬ ‭2.947‬ ‭0.0517‬ ‭n.s.‬

‭(20-30) - (60-70)‬ ‭18.38‬ ‭5.17‬ ‭568‬ ‭3.558‬ ‭0.0074‬ ‭**‬

‭(20-30) - Control‬ ‭-21.91‬ ‭1.93‬ ‭568‬ ‭-11.38‬ ‭0.0001‬ ‭***‬

‭(30-40) - (40-50)‬ ‭6.48‬ ‭5.59‬ ‭568‬ ‭1.159‬ ‭0.9091‬ ‭n.s.‬

‭(30-40) - (50-60)‬ ‭11.93‬ ‭7.76‬ ‭568‬ ‭1.537‬ ‭0.7224‬ ‭n.s.‬

‭(30-40) - (60-70)‬ ‭9.43‬ ‭6.2‬ ‭568‬ ‭1.521‬ ‭0.7322‬ ‭n.s.‬

‭(30-40) - Control‬ ‭-30.86‬ ‭3.78‬ ‭568‬ ‭-8.167‬ ‭0.0001‬ ‭***‬

‭(40-50) - (50-60)‬ ‭5.45‬ ‭8.06‬ ‭568‬ ‭0.676‬ ‭0.9939‬ ‭n.s.‬

‭(40-50) - (60-70)‬ ‭2.95‬ ‭6.44‬ ‭568‬ ‭0.458‬ ‭0.9993‬ ‭n.s.‬

‭(40-50) - Control‬ ‭-37.34‬ ‭4.3‬ ‭568‬ ‭-8.685‬ ‭0.0001‬ ‭***‬

‭(50-60) - (60-70)‬ ‭-2.5‬ ‭8.51‬ ‭568‬ ‭-0.293‬ ‭0.9999‬ ‭n.s.‬

‭(50-60) - Control‬ ‭-42.79‬ ‭6.92‬ ‭568‬ ‭-6.185‬ ‭0.0001‬ ‭***‬

‭(60-70) - Control‬ ‭-40.29‬ ‭5.03‬ ‭568‬ ‭-8.014‬ ‭0.0001‬ ‭***‬

‭Appendix 10: Results of Analysis 3.3.2‬
‭Meadow cover with cumulative duration of fish farming activity- beta regression‬

‭Predictor‬ ‭Estimate‬ ‭Std. Error‬ ‭z value‬ ‭p‬‭-value‬ ‭Significanc‬
‭e‬

‭(Intercept)‬ ‭–0.455‬ ‭0.177‬ ‭–2.572‬ ‭0.0101‬ ‭*‬
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‭Duration:‬
‭20–30 yrs‬

‭–0.394‬ ‭0.162‬ ‭–2.431‬ ‭0.0151‬ ‭*‬

‭Duration:‬
‭30–40 yrs‬

‭–0.589‬ ‭0.211‬ ‭–2.784‬ ‭0.0054‬ ‭**‬

‭Duration:‬
‭40–50 yrs‬

‭–0.587‬ ‭0.259‬ ‭–2.265‬ ‭0.0235‬ ‭*‬

‭Duration:‬
‭50–60 yrs‬

‭–0.865‬ ‭0.242‬ ‭–3.575‬ ‭0.0004‬ ‭***‬

‭Duration:‬
‭60–70 yrs‬

‭–0.763‬ ‭0.216‬ ‭–3.538‬ ‭0.0004‬ ‭***‬

‭Control (no‬
‭farming)‬

‭0.634‬ ‭0.154‬ ‭4.122‬ ‭<0.0001‬ ‭***‬

‭Depth‬ ‭0.0055‬ ‭0.0107‬ ‭0.516‬ ‭0.6062‬

‭Model summary‬

‭Metric‬ ‭Value‬
‭Phi (precision)‬ ‭0.494 (SE = 0.0176)‬
‭Log-likelihood‬ ‭2305 (on 9 DF)‬
‭Pseudo R²‬ ‭0.2244‬
‭Quantile residuals‬ ‭Min: –1.597, 1Q: –0.725, Median: –0.207,‬

‭3Q: 0.697, Max: 1.985‬
‭Iterations‬ ‭20 (BFGS) + 3 (Fisher scoring)‬

‭Number of Samples‬

‭Cumulative Duration (years)‬ ‭n‬
‭10-20‬ ‭117‬
‭20-30‬ ‭272‬
‭30-40‬ ‭73‬
‭40-50‬ ‭43‬
‭50-60‬ ‭40‬
‭60-70‬ ‭66‬
‭Control‬ ‭570‬

‭Estimated marginal means‬

‭Duration‬
‭Category‬

‭Emmean‬ ‭SE‬ ‭Lower CL‬ ‭Upper CL‬ ‭% Loss vs‬
‭Control‬

‭10–20‬ ‭0.4‬ ‭0.0335‬ ‭0.335‬ ‭0.466‬ ‭28.20%‬
‭20–30‬ ‭0.31‬ ‭0.018‬ ‭0.275‬ ‭0.346‬ ‭44.30%‬
‭30–40‬ ‭0.27‬ ‭0.0319‬ ‭0.208‬ ‭0.333‬ ‭51.50%‬
‭40–50‬ ‭0.271‬ ‭0.0431‬ ‭0.186‬ ‭0.355‬ ‭51.40%‬
‭50–60‬ ‭0.219‬ ‭0.0342‬ ‭0.152‬ ‭0.286‬ ‭60.70%‬
‭60–70‬ ‭0.237‬ ‭0.0299‬ ‭0.179‬ ‭0.296‬ ‭57.50%‬
‭Control‬ ‭0.557‬ ‭0.0158‬ ‭0.526‬ ‭0.588‬ ‭0.00%‬

‭Tukey-adjusted pairwise comparisons of estimated marginal means‬

‭Contrast‬ ‭Estimate‬ ‭SE‬ ‭z-ratio‬ ‭p-value‬ ‭Significance‬

‭60‬



‭(10–20) –‬
‭(20–30)‬

‭0.08988‬ ‭0.0378‬ ‭2.375‬ ‭0.2092‬ ‭n.s.‬

‭(10–20) –‬
‭(30–40)‬

‭0.12993‬ ‭0.0458‬ ‭2.838‬ ‭0.0682‬ ‭n.s.‬

‭(10–20) –‬
‭(40–50)‬

‭0.12963‬ ‭0.0546‬ ‭2.374‬ ‭0.2095‬ ‭n.s.‬

‭(10–20) –‬
‭(50–60)‬

‭0.1809‬ ‭0.0475‬ ‭3.805‬ ‭0.0027‬ ‭**‬

‭(10–20) –‬
‭(60–70)‬

‭0.16288‬ ‭0.0448‬ ‭3.637‬ ‭0.0051‬ ‭**‬

‭(10–20) –‬
‭Control‬

‭–0.15689‬ ‭0.0371‬ ‭–4.228‬ ‭0.0005‬ ‭***‬

‭(20–30) –‬
‭(30–40)‬

‭0.04005‬ ‭0.0361‬ ‭1.109‬ ‭0.9257‬ ‭n.s.‬

‭(20–30) –‬
‭(40–50)‬

‭0.03975‬ ‭0.046‬ ‭0.863‬ ‭0.9779‬ ‭n.s.‬

‭(20–30) –‬
‭(50–60)‬

‭0.09102‬ ‭0.0381‬ ‭2.391‬ ‭0.202‬ ‭n.s.‬

‭(20–30) –‬
‭(60–70)‬

‭0.073‬ ‭0.034‬ ‭2.147‬ ‭0.3247‬ ‭n.s.‬

‭(20–30) –‬
‭Control‬

‭–0.24677‬ ‭0.0244‬ ‭–10.130‬ ‭<0.0001‬ ‭***‬

‭(30–40) –‬
‭(40–50)‬

‭–0.00030‬ ‭0.0534‬ ‭–0.006‬ ‭1‬ ‭n.s.‬

‭(30–40) –‬
‭(50–60)‬

‭0.05097‬ ‭0.0462‬ ‭1.104‬ ‭0.9271‬ ‭n.s.‬

‭(30–40) –‬
‭(60–70)‬

‭0.03296‬ ‭0.0433‬ ‭0.761‬ ‭0.9885‬ ‭n.s.‬

‭(30–40) –‬
‭Control‬

‭–0.28682‬ ‭0.0357‬ ‭–8.030‬ ‭<0.0001‬ ‭***‬

‭(40–50) –‬
‭(50–60)‬

‭0.05127‬ ‭0.0547‬ ‭0.938‬ ‭0.9664‬ ‭n.s.‬

‭(40–50) –‬
‭(60–70)‬

‭0.03325‬ ‭0.0517‬ ‭0.643‬ ‭0.9954‬ ‭n.s.‬

‭(40–50) –‬
‭Control‬

‭–0.28652‬ ‭0.0462‬ ‭–6.197‬ ‭<0.0001‬ ‭***‬

‭(50–60) –‬
‭(60–70)‬

‭–0.01802‬ ‭0.0449‬ ‭–0.401‬ ‭0.9997‬ ‭n.s.‬

‭(50–60) –‬
‭Control‬

‭–0.33779‬ ‭0.0379‬ ‭–8.924‬ ‭<0.0001‬ ‭***‬

‭(60–70) –‬
‭Control‬

‭–0.31977‬ ‭0.0341‬ ‭–9.365‬ ‭<0.0001‬ ‭***‬

‭Appendix 11: GitHub Link: R Script for Analyses and Figures‬
‭https://github.com/etjkong5/Masters-2024‬
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